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SUMMARY

The state equations of tall buildings with TMD and Tendon control devices
under the action of random excitations are derived in this paper. By using modal
matrix, separation theorem and optimal control theory, the optimal close-loop
critical modes control roles and the response covariances of controlled critical
modes are obtained, and also the response covariances of residual modes are found,
the critical-mode control is superior insofar as the amount of on-line computa-
tions is concerned.

INTRODUCTION

The responses of tall building structures under the action of environmental
loads, such as winds, earthquakes, and waves, which are random in nature, and the
applied control forces are random. Structural vibration control theory and its
applications to building structures have been developed in recent years, also,
various methods of designing control devices to alleviate tall building vibrations
have been found by researchers.

If the objective function is quadratic, then the optimal close-loop control
system requires the solution of a matrix Riccati equation. The solution of a
matrix equation is almost prohibitive for a structure with many degrees of freedom,
such as a tall building. Therefore, a good method must be found, in this paper,
using modern control theory, the critical modes are controlled in a close-loop
control form, the remaining uncontrolled modes may be excited by the control
forces, and also by environmental loads. Optimal critical-mode control analysis
is carried out to determine the stochastic response and control forces and the
uncontrolled mode response, the remaining uncontrolled modes are disadvantageous
to the stochastic response of tall building structures with a control system.

FORMULATION

Fquations of Motion The structural model chosen for the present study is an n-
story shown in Fig. 1. Consider an n-story building in which an active mass dam-
per on the top (nth) floor and some tendon control devices in the building are
installed. Let %y be the displacement of the ith floor. Then, the equations of
motion for floors are given by
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1=1,25000,1, 14m+1,...,n=1; m+l<n

and m.%, +C (- o) + K (X-X 4) - G, (X 4-%)

K g (%) = P-U, 3514, .., L4 (2)
end MX +K (X-X ,)+0C (X-X ,)+K (X=X ) +Ce(X4-X ) =P -Uy (3)
and M X, + K (XX ) + C (X~X ) = U, (4)

Let x5 = the earthquake displacement; yj = the relatlve displacement of the jth

Y3 . Then Egs.(1-4) can be

floor with respect to the j-1th floor; x; = xo+jz1

cast into a matrix equation as feollows:

my + Cy + Ky = P + By + FX_ (5)
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The matrix K in Eq.5 can be obtained from the matrix c¢ by replacing ey (1=
1,2,...,n) and cg by K;(i=1,2,...,n) and K3, respectively.

( [O] Lx(m+1))
-1 0... O 0
0 -1 0 0

sess e

0 0 ... -1 0

0 0 0 O

B= LI ) mx(m+1)
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0 0... 0 O
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0 0... 0 -1
[0 0. 0 1) (a#1)(m#)

Eq.5 can be converted into a first-order matrix equation with a dimension of 2n+2.
% = AZ + EU + D (6)

in which 0 I [ rq
= -1 -1 ; = toMT ;
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Modal Decomposition— The elgenalues of A are n+l pairs of distinctive complex
conjugates. Let xj= us +1§5 j=1,2,...,n+1) be the jth pair of eigenvalues of A
with the corresponélng pair of eigenvectors ajtibj, in which 1 = N-T, n; andn;
are real values; and aj and b; are real vectors, the real matrix T constructed
from T—[aq,b1,...,a3, %j,...,a +1, b,+1] will transform matrix A into a canonical

form[A] , i.e. (0] T-1AT, in which [/h]_ [ J -nJ . With the aid of the transfor-
4j
mation Z= T[V] Eq.6 is uncoupled into n+l1 pairs as follows:

(1) = (V) + 80+ p, (7)

in which E1=T'1E; D1=T'1D, let p be the number of lowest modes to be controlled.
Then Eq.7 can be partitioned into critical modes and residud modes as follows:

UJ =MJ[%]+EmU+DM (8)
() = W0 + 5,7+ 0y, ®
AJ 0]
in which [V] _[ ] [ ] [[(O]] [/\r} ;
D’]c E1C
D, =[D1 i B, = [ [V ], Dy, and Eq, are 2p vectors; [AJ is 2p by 2p

matrix. © A performance index, J, in the commonly used gquadratic form is considered:

te
J=§E{’to[ZTQZ+UTRU}} dt . For the optimal critical mode control considered herein.

=3E ]fg ((v.) "ae vy +v7au]at} .

OPTIMAL GCONTROL AND THE RESPONSE OF A CONTROLLED SYSTEM
The following assumptions are mode to simplify the analysis:
B(p(t)] = E[6(t)] = E[2(t,)] = 0
B (2(4,)2" (to )] =2 5 E[D(£)D (1)) = N()&(T-1);
2[6(2)6T(D)] = u(6)§(T-1);
£(2(t,)6" (1)) =E[Z(to)D (¢) = B[D(t)6"(+)] =

with the aid of the linear transformation T Eq.10 can be converted into a newform
as follows:

Elo(t)] = 05 E[Vo(t)] = E[D1c(t)]= 0; E[Vg (to)Va (to)] = Pug 3
B[y (81016 (D)] = Ny (0)6@-); B(6(2)6T (D] = M(£)§(T-t); (11)
B[V, (t)6T(£)] = 0; E(Ve (46)D10 (8)] = 05 E[D1e(8)aT (8)] =

in which G(t) is a measure white noise vector in the measure equation II=HZ+G or
II=H,[Ve] +G.

(10)
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Optimal Control  Optimal control can be obtained by separation theorem and opti-
mal control theory

T(t) = -c(t) [7) (12)

in which ¢(t)=R"'E{,S(t), in which
§(t) = -sl) - A s +5B R BT GS - q
S(tf) =
= [AJ [\7C] + B U (t) + K(t)[I-HC[\7c]]
Vo (t5)] = 0
in which K(t)=PHM | (t)
P =[AJP + P[] + Ny (t) - PHGM (t)E.P"

p(to) = Pog (15)

The Resgonse of a Controlled System Let € be [VC] [Vc] then covariance matrix
of £ and [Vc] can be obtained by Eq.15 and the following equations, respectively.

. -1.T -1 T,~1 T
r[\'}c] - [[Ac] -E‘l cR E‘lcsIﬁ\’}c] +r[?/c][[/‘d ~E1 cR E1cS]+PHcM (t>HcP (16)
in whicn P(t)=e[6€]; [I0J1-e((3J(3"]
The response covariance of controlled modes can be obtained by the following
equation
r[ﬁcl = 2[[v] [VC]T] =[HJe) + 2(6) (17)

The covariance of control forces is

i, To_ o1l ofay T pot
Purs) = B0UF] = R7'E; s[{§) 878, R

(18)
The optimal objective function is

tr
T, o-1.T
= X
= 2Jto'rr[SNc + 8B, R™Ej SP]at (19)

the response covariance of residual modes is
T
ftrg = =20J0I T =g +T vy (20)

. o T T
in which rEVr']] =Mr] n‘Vﬂ] + r[Vr'lI [A ] + Ny

: -1.T -1.T (21)

(tv,01 =[AJ) [T 2}[,1] +E RE sf' ]s B R B
the total response covariance of a controlled structure can be obtained by
f['{,‘c] +P (%) 0 .

[ () =xlzz’] =T
Lt E[zz°] . r[Vrﬂ“”erJ

in which we have assumed that

[l ] (v, )] = o, E((vI[v,]" -
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CONCLUSION

The optimal close-loop critical modes controls have been obtained, also, the
Tesponse covariances of residual modes have been found, the method present herein
is simple, since the number of critical modes p is usually small, the on-line
computation involving the solution of 4p first-order differential equations for
the determination of control forces is not excessive, the critical-mode control is
Superior insofar as the amount of on-line computations is concerned.
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