AN ACCURATE ESTIMATION OF THE FUNDAMENTAL PERIOD
OF REGULAR TALL BUILDINGS

Joaquin Monge (I)

SUMMARY

Tne modeling of a building structure by a continuum gives a fast and
sufficiently accurate method for the determination of the fundamental
periods., Tne stiffness properties of every structural element are taken
into account as well as the mass of tue building and tie foundation rotation.
The procedure is explained and tne results of its application to four cuilean
tall puildings are compared with tnose obtained by a matrix modal analysis,
by using transfer matrices and by the formula of the Uniform building Code.

A different approach for buildings without snear walls is also snown.

INTRODUCTION

A method for the approximate dynamic analysis of a building structure
based on its modeling by a continuum nas been already reported (Ref.l).
This model takes into account variations in the story heights, in the
stiffness of the structural elements and in the mass per unit neignt. The
solution is obtained by using the tecnnique of transfer matrices and it can
be processed by a microcomputer. In tne case of regular buildings tne sol-
ution 1s obtained from grapas and tables and the fundamental periods of the
building in two directions can be found by hand calculations in about three
hours with a good accuracy.

The main nypothesis is that the sinear force in any vertical substructure
j suca as a wall or a rigid frame is of tne form Qj (z) = ClJy (z) - Cz2; y'"(z),
wnere C;j and C,j are stiffness coefficients. Flg.l siiows the coordlnate
system. The equilibrium equation at any level requires that the total shear
force of tane building at that leves be Q(z) = Cyy'(z) - C2y'"(z), wnere C; =
chj and C2 = XCZj.

If tne structure vibrates in a normal mode, tne deflection is given by
y(z) sin(wt + B), where y(z) is the mode siape, w the mnatural frequency of
tne mode and B a pnase angle. By derivation with respect to z and with thne
substitution of -Q'(z) by the imertial forces per unit height LW 2y(z)sin
(wt + p), W beeing the mass per unit neignt, the equation for the normal
mode is obtained. After eliminating the time factor and with the change of
z by the non dimensional variavble s = z/H, where H is the total heignt of
the building, this equation becomes

v V(s) - a*y"(s) - §y(s) = v
with tne boundary conditioms y(J) = 0, y'(0), y"(1) and Q1 = Ciy'(1l) -~ Coy'"

(1) = 0. a is a parameter of the structure and § a frequency factor that
is a function of a. Their values are given by the relatioms
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Gz = C1H2/C2 62 = wzu}l“/cz

The inclusion of the foundation rotation leads to the same equation with
a second member that is not zero; the boundary conditions are also different
but the solution is similar. A second parameter € appears, expressed by

€ = Cz/k¢IFﬂ

This model requires that the foundations are equivalent to one single
foundation. Iy is the inertia of the contact area about an axis through its
centroid that is transverse to the direction of motion. kg is the elastic
modulus of tie soil for rotation of the foundation about an horizontal axis
under a dynamic overturning moment: the product k¢l is equal to tne ratio
overturning moment: angle of rotation in radianms. Tne graph of Fig.2(Ref.2)
gives the frequency factor §;, that corresponds to the frequency w: of the
first mode of vibration, in function of the two parameters O and t¢. The
curve € = U means that tnhe soil is infinitely stiff and no rotatiom occurs.
Tne four ouildings tnat will be mentioned in this work, founded on a dense
gravel, nave values of € in the range 0.0l to 0.03.

The curves of Fig.2 were obtained for C;(z), C2(z) varying with the
law C.(z) = C.(9/8 - z/4i), i = 1 or 2, and for Y constant. Our tall
buildings in taile usually have a width of walls and beams that is staggered
in tne bheignt of the building. One extreme case is that of comstant width.
The opposit extreme case has widths at the top that are 50% of the width
at the base. The formula above mentioned can be used for all buildings in
this range with an error less than 5%.

DETERMINATION OF THE STIFFNESS CONSTANTS C3j and C2j

An uncoupled wall has a shear Qj(z) = —Eij'"(z), 80 C;; = 0 and Cy: =
EI:, the product of tne modulus of elasticity and the inertia of the cross
sectional area about a transverse axis through its centroid.

Fig.3 shows two coupled walls. The main hypothesis above mentioned
requires that the walls deflect only by bending moments. No deformations
under axial load or shear forces can be considered. By accepting this, the
relative displacement of the end sections of a beam are Ly', as shown in
toe figure. L is the distance between the axis of the walls. The shear
force T in the beam is kLy', k beeing the beam stiffness. The counter-
flexure point of the beam is located at a distance Ly from the axis of wall
"a'"; the beam acts with a bending moment TLy = kLLgy' on the wall, with a
sign tnat is opposite to that of the bending moment originated by the lateral
forces acting on the wall. The bending diagram of the wall due to the actions
of beams is a staggered one, but in the modelation by a continuum it becomes
a continuos line with a slope -(kLL,/n)y', where h is the story heigit.

By deriving the equation -EIgy'"(z) = M(z), the equation -EI_y'"(z) =
Qa(z) - (kLLa/h)y' is obtained and it is readily seemn that Cj5 = kLL,/h and
C2; = EI;. When two beams are connected to the wall, one to each side,
their effects are added in the case of Cig, that is now expressed by a sum.
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Beams that arrive at right angle to the plan of the wall may add new
terms to C15. Figures 4 and 5 show two of such cases and are self-explaining.
In Fig.4, wall "a" pas a Ci15 = 2KLL,/h and each of the walls "b" a Cip =
kKLl,/n. In the case of Fig.5, L = Ly - Lp; each of the walls "a" have a
Lia = KLLa/h and each of the walls "b" a Cip = -KLLp/h. The sign minus is
because the action of the beam charges the walls "b" down, acting with a
bending moment that has the same sign than that originated by horizontal
loads.

A column c whose ends have a relative interscory displacement A takes
a shear force Q. = Kcb. The stiffness K. may be computed for instance by
Dr. Muto's method in order to include the effect of end rotations, stiff
end sections and shear deformation. If Q¢ = K. hA/h is replaced by Q. =
Bchy'(z), it is found that Cic = Kch and Cz¢ = 0. The sum of tne stiffness
coefficients C,, over all the frame columns gives the value of C1j for the
frame j.

If the building is regular, as those shown in Fig.6,7 and 8, C; and C;
may be variable in the height. Their values can be averaged by C; =
(XCiphg) /H, C2 = (ICzyhk)/H, where Cik, C2k are the values at a story k and
hy the story height. Then the value of o and € are calculated and the graph
of Fig.2 gives §3;. With &;, the determination of wi and T; = 27/wi is in-
mediate.

APPLICATION OF THE METHOD TO TALL CHILEAN BUILDINGS

Four tall reinforced concrete chilean buildings of 21 and 22 stories
were analized in the two main directioms, (Ref.3), by three metnods. No
foundation rotation was considered in this study. The results appear in
table N°1, where (M) means matrix modal analysis, (T) means approximate
analysis by using transfer matrices, (G) means approximate determination of
periods by the graph of Fig.2 and (UBC) means the period determined by UBC
formula T = Q.05 H/Jﬁ, D beeing the lenght of the building in the direction
of the movement, H and A beeing expressed in feets.

Building N°4 is not shown and resembles building N°2. From the tables
it can be seen a good agreement of the procedure (G) with the matrix analysis
(M); the use of transfer matrices is even closer, with few exceptioms. It
seems not fair to compare this results with the UBC formula; apparently
chilean tall buildings are stiffer than those in California. In any case
a procedure that takes into account the stiffness of every structural element
seems more reliable that empirical formulae that may have large dispersions ia
their results.

Building N°4 was tested by forced vibration, finding the periods Ix =
0.69 sec, Ty = 0.95 sec, after the construction was finished and the build-
ing was empty. The computed values (M), (T) and (G) suppose a liveload
equivalent to a 7% of the dead load, so the experimental values should be
increased in about 3,5% before comparing them with those in the table.

429



The assumption that the walls are not extemsible under axial loads
introduces an error by supposing a stiffer structure than the actual ome,
This error is small for C}H?/C, < 3, where C} is the component of C; due to
the action of beams on walls. Anyhow, this error is in the safe side in the
computation of the base shear.

ESTIMATION OF THE FUNDAMENTAL PERIOD OF BUILDINGS COMPOSED BY RIGID FRAMES

If there are no walls, C2 = 0 and the equation of normal modes and the
boundary conditions change. The problem is equivalent to that of a shear
beam. By using the average value of C; in the height of the structure, the
fundamental period T is given by

fun!
T = 4\[— (a)
Ci1

In a seven story high reinforced concrete building, this formula was
checked against (b) matrix modal analysis (c¢) Rayleigh method, (d) UBC
formula T = 0.1 N, where N is the number of stories, (e) ATC-3 formula T =
0.08 N §/2.02 (N-3)2 in a preliminary version and (f) ATC-3 formula T =
0.025 n”" ", where h, is the height of the building in feets. The results

are shown in the table N°2.

TABLE N®1: DIMENSIONS AND FUNDAMENTAL PERIODS OF FOUR BUILDINGS
Note: In the drawings, the horizontal axis of the plan is designed with x,

the vertical one with y. Tx and Ty are the fundamental periods in
these directions.

Building N° 1 2 3 4

H(m) 63.04 57.10 59.47 57.65
Dx(m) 47.50 20.80 23.46 23.30
Dy(m) 29.30 24.70 23.00 19.92

Tx (M) 0.45 sec. 0.81 sec. 1.16 sec. 0.74 sec.
Ty (T) 0.45 sec. 0.82 sec. 1.11 sec. 0.77 sec.
Tx(G) 0.48 sec. 0.82 sec. 1.10 sec. 0.81 sec.
T, (UBC) 0.81 sec. 1.13 sec. 1.12 sec. 1.08 sec.
Ty(M) 0.55 sec. 0.83 sec. 0.70 sec. 1.13 sec.
Ty(T) 0.55 sec. 0.76 sec. 0.70 sec. 1.12 sec.
Ty(G) 0.66 sec. 0.78 sec. 0.70 sec. 1.14 sec.
Ty(UBC) 1.03 sec. 1.04 sec. 1.03 sec. 1.17 sec.

TABLE N°2: FUNDAMENTAL PERIODS OF VIBRATION T(sec.)

Method (a) (b) (¢) (d) (e) (F)
x 0.715 0.75 0.725 0.70 0.88 0.56
Ty 0.89 0.98 0.93 0.70 0.88 0.56
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