A STUDY ON MODAL COUPLING ANALYSIS OF STRUCTURES
BY THE COMPONENT MODE METHOD

M. Takita (I)
M. Izumi (II)
K. Ito (III)
H. Katsukura (IIII)
Presenting Author: M. Takita

SUMMARY

In this paper, the conception of Two-Stage eigenvalue analysis, based on
the component mode method is developed. Based on this conception, the Story-
Mode coupling analysis, applicable to multistory buildings is developed as
well. The idea of modal couplings obtained from the analyses is examined
theoretically and numerically. The eigenvalue analysis of a building model
with 3174 degrees of freedom is performed.

INTRODUCTION

The substructure method using component modes, the component mode method,
has been developed in order to avoid the troubles relating to the storage
capacity and the run time of computers and to perform the analysis of each
substructure independently. In general, the substructure method provides
information on the interactions among substructures, which is not obtained
from the method treating the complete structures. Accordingly, the authors
have developed the component mode method as one which enables researchers
to assess the dynamic properties of a structure based on information about the
interactions between the substructures.

In this paper, the component mode method, which is devised into several
methods according to the treatment of substructures, is used to develop the
Two-Stage eigenvalue analysis method. In this method, several fundamental
modes of the substructures are selected for the purpose of not reducing
truncation errors but evaluating the interactions between substructures
effectively. As an application of the method, the idea of the Story-Mode
coupling analysis for multistory buildings is developed. Furthermore, how the
interactions between substructures can be observed from the analysis is
explained. As a numerical example, the eigenvectors of a three dimensional
building model with 3174 degrees of freedom, calculated by means of the Story-
Mode coupling analysis are illustrated.

(I) Graduate Student, Tohoku Univ., Sendai, Japan
(II) Prof. of Engin., Tohoku Univ., Sendai Japan
(III) Assoc. Prof. of Engin., Hachinohe Tech. Univ., Hachinohe, Japan
(IIII) Research Assoc. of Engin., Tohoku Univ., Sendai, Japan
TWO-STAGE EIGENVALUE ANALYSIS

The idea of the Two-Stage Eigenvalue Analysis based on the component mode method is shown in Fig.1.

In this figure, a total structure is divided into five substructures. There are several treatments of the substructures. In a given substructure, the treatments can be classified depending on whether the displacements of other substructure are made fixed or free, and whether the forces of other substructure are zero or not, as well as other factors.

In the first stage of the analysis, the eigenvalue analyses of the substructures are performed to extract several fundamental modes, such that they represent the properties of the substructures effectively. Furthermore, if necessary, the Ritz function approach, which facilitates the evaluation of the arbitrary deformation modes of each substructure, can be used as the fundamental modes. The component modes are determined by the mass normalizing fundamental modes of substructures. By synthesizing the necessary component modes of each substructure and by considering the way of the treatment of substructures, a transformation matrix \(L \), which relates the physical coordinates \(\chi \) to the generalized coordinates \(Q \), can be determined. In the formation of \(L \), the degrees of freedom can be sufficiently reduced by selecting necessary component modes in each substructure. The generalized mass, \(M^k \), and stiffness, \(K^k \), are orthogonalized within each substructure. That is the diagonal block of \(M^k \) and \(K^k \) are diagonal. Because the component modes are selected and determined to represent the deformation properties of the component well, from \(M^k \) and \(K^k \), the coupling relations of component modes between different substructures can be extracted.

In the second stage, the eigenvalue analysis of the generalized equation, which is locally orthogonalized by the transformation matrix \(L \), is performed to orthogonalize the equation globally. Since the size of the eigenvalue analysis is reduced to a considerably smaller size in the first stage, the execution of the analysis will be very easy. Accordingly, not only \(M^k K^k \) type but \(M^k C^k K^k \) type eigenvalue problems can be done easily. As for the damping of structures, it seems to be quite rational to determine the damping matrix for the generalized coordinates, since they are formulated by the fundamental modes of each substructure. The obtained modal matrices \(G \) and \(G_c \), combined with the transformation matrix \(L \), represent the MK type and the MCK type modal matrices of the total system.

As mentioned above, the eigenvalue problem of the total system can be performed by the eigenvalue analyses of the individual substructures and a eigenvalue analysis of the generalized system whose degrees of freedom are sufficiently reduced to be a small size, by selecting necessary component modes. Accordingly, by the two-stage eigenvalue analyses, large size eigenvalue analyses can be conducted economically and information on the coupling relations of components can be extracted.
THE FIRST STAGE:
formulation of \(L \) matrix
by the substructure analysis

- \(L \) is composed of the fundamental modes obtained from
 the eigenvalue analyses in each component
 or the Ritz function approach

THE SECOND STAGE:
real or complex eigenvalue problem of the locally
orthogonalized system

- Using \(L \), reduction of degrees of freedom of the system
 is executed, and the equation of motion is transformed
 to a new coordinate defined by the necessary component
 modes.

Example of the treatment of substructures:

- Substructures 1, 2, 3, 4, 5
- Total system

Fig. 1 Two-Stage Eigenvalue Analysis
STORY-MODE COUPLING ANALYSIS

As an application of the two-stage eigenvalue analysis, the story-mode coupling analysis method for multistory buildings is developed in Fig. 2.

For an N-story building, if the component mode method is applied, it is quite rational to divide the building into N components. In Fig. 2, therefore, N components are introduced. In this case, since a story becomes a component, all information obtained from the two-stage eigenvalue problem can be used for story-modes coupling analysis as well. Therefore, the component modes become story-modes, the coupling relation of component modes becomes the coupling relation of story-modes, and so on.

The treatment of each component, that is each story, is shown in Fig. 2 schematically. This treatment is based on the method by Benfield and Bruda. Without introducing the complicated idea of the interface, the procedure of the component mode method by them can be easily be extracted to the N-story model by introducing a transformation matrix R. It is evident from the figure, the transformation matrix R is determined in the process of the block Gaussian elimination of the stiffness matrix K. A block in this case is a story. The relative displacement \mathbf{x} is transformed to \mathbf{X} by R. The component modes are calculated for the displacement \mathbf{X}. In this paper, X is said to be an independent displacement. The meaning of \mathbf{X} is understood by the figure. That is X_S is the displacement which generates a restoring force with deformation in the s-th component. As shown in the figure, the restoring force with deformation in the s-th component is generated only by the independent displacement X_S. Therefore, the deformation properties of s-th component can be determined by X_S sufficiently, and thus X_S gives a proper coordinate to determine the component mode ϕ_S.

In the two-stage eigenvalue problem becomes the form $L = \Phi \Phi^*$, where Φ is a block diagonal matrix composed of story modes. By the transformation by L, the generalized stiffness matrix K^* becomes diagonal, the generalized mass matrix M^* is modally coupled. By M^*, the coupling relations of story-modes between stories can be understood. For example, from $\phi_S^* \bar{M}_{SS} \phi_{SN}$, the participating effects of ϕ_N on ϕ_S can be realized.

Because the independent displacement X_S represents the deformation properties of story s, it will be possible to approximate the X_S by first several story-modes. Therefore, the generalized mass and stiffness matrices become a small size by the transformation of L. This indicates that, based on the idea shown in Fig. 2, it is quite easy to conduct the eigenvalue problems of multistory buildings. Namely, by executing a set of small size eigenvalue problems, the large size eigenvalue problems of the buildings can easily be conducted. Furthermore, in the process, information on story-mode coupling relations can be obtained.

414
Fig. 2 Story Mode Coupling Analysis

The diagram illustrates the coupling of various modes in a story context, likely related to structural engineering or a similar field. The nodes and arrows suggest a complex system of interactions, possibly representing forces, moments, or other physical quantities at different levels. The labels and annotations indicate specific variables and conditions necessary for the coupling analysis.
A NUMERICAL EXAMPLE

A numerical example, using the story-mode coupling analysis, is shown in Figures 3 and 4, and Table 1. In the lower part of Fig.3, the model of a 5-story building and its substructures are shown. The building model, with 3174 degrees of freedom, is divided into 9 substructures. The first four mode shapes are illustrated in the upper part of the figure. The component modes, that is story modes, calculated in the process of the analysis are also shown in Fig.4. The values of M^*, story-mode coupled mass, are shown in Table 1.

In Fig.4, locally complicated story-modes appear due to the existences of wall elements and additional masses. In each story-mode, the span-direction displacements near the hard-wall-sections 1 and 2 are small. The second and third story-modes of component numbers from 5 to 8 are torsional modes whose centers are the hard-wall-sections 1 and 2 respectively. By the effects of additional masses which are evaluated as the weight of the penthouse of the building, the second and third modes of component number 4 are locally excited around the hard-wall-section 1.

The coupling relation of story-modes are shown in Table 1. From the table, the rough magnitudes of interactions between stories can be deduced. For example, it is shown that the interaction between the two kinds of torsional modes is comparatively great. Other information on story-mode interactions can be extracted from the table.

Since the mode shapes of the total building are synthesized by the story-mode, similar modes as in the stories appear. The second and third modes in the total building are evidently torsional modes, appearing also in the stories.

CONCLUSIONS

In this paper, the conception of the two-stage eigenvalue analysis based on the component mode method is developed in order not only to perform efficient analyses but also to evaluate the coupling relations between substructures. As an application of the method, the idea of story-mode coupling analysis for multistory buildings is also developed, and information on story-mode coupling relations is examined both theoretically and numerically.

REFERENCES

4) E.L. Wilson, Ming-Wu Yuan, and J.M. Dickens, "DYNAMIC ANALYSIS BY DIRECT SUPERPOSITION OF RITZ VECTORS", Earthquake Engineering and Structural Dynamics, Vol.10, 1982, pp.813-821
1st mode shape
F = 2.252 (Hz)
T = 0.444 (Sec)

2nd mode shape
F = 3.233 (Hz)
T = 0.309 (Sec)

3rd mode shape
F = 4.256 (Hz)
T = 0.235 (Sec)

4th mode shape
F = 6.122 (Hz)
T = 0.163 (Sec)

Fig. 3 Model and Modal Shapes
Table 1 Modally Coupled Mass M^*

<table>
<thead>
<tr>
<th>NUMBER OF THE COMPONENT</th>
<th>first mode shape</th>
<th>second mode shape</th>
<th>third mode shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>4th (3F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5th (4F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6th (3F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7th (2F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8th (1F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9th (1F)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 4 Modal Shapes of the Components

\[\text{'*'} \text{ is a small value less than 0.01} \]