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The main diffioculty whieh arises in solving stress-strain state
problems for dams under seismic actions is the lack of information on
the seismie sources. The only available information is provided by
seismograms of displacements on the surface of the foundation which
can be measured on the site of the future dam footing.

When the same seismic astions are repeated after the erection of
the dam, the mentioned seismograms cannot be used as boundary econdi-
tions along the footing of the dam because they get altered under the
influence of the dam. Nevertheless, the knowledge of these seismogr-
ams turns out to be sufficient for the solution of the problem. Below
we show haw to do this.

A plane dynamic problem of the theory of elasticity and hydro-
" elasticity is discussed for the dam-foundation-liquid system. The
soln[tion ]ia carried out in finibe differences by a method deseribed
in |1, 2|

I. Let the unknown source generate a wave motion in the founda-
tion whieh is assumed to be elaatic halfplane. This wave motion mani-
fests itself on the surface é/:O in the form of horisontal and
vertical displacements 2((X,y, ) resp.  U(x,4,t) which are
known /moamed/ « In the presence of the dam the wave motion in the
half-plane gets altered under the influence of reactions (O(x,t),T(x¢)
which arise along the footing 4f the dam /aee fig. { / » Therefore
the not:lonf )1n the ha.lf-]))luno will be a superposition of displacements

Ulx, iy, U/ x t caused by the seismic source, and of an
aﬂditg.ojzgl dilpla/ca:leﬁtu aU(zx, Y t), aV(xy, t)  caused by
the mentioned reactions., So the displacements in the half-plane
/imcluding the dam footing/ will be

Ulz,y,t)=uxy, )tz yt), Vixyt)-Uayt)uvyt) )

These displacements related to the points on the footing
Ulx,0¢), V(x,0,¢) are the boundary conditions for the dam which deter-
mine the motion in it.

2. Let us give here some formulae from [2] which are the fi-
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nite-difference analogues of the Lamé motion equations. These formulae
permit to calculate the displacements U, IV at the moment Z+a¢  at
each node ¢ of the domain under consideration if these displacementas
are known at the moments ¢ and@ ¢-4¢ /the explicit three-layers
difference scheme/. The boundary conditions for the domain and the imi-
tial oconditions must be kmown.

A1l the inner nodes of the network domain /see fig, / / the fin-
ite-difference motion equations are of the form

7 L) e (U Uy *
{ L+ax i-axZ +cfm2 i+ay+ -8y /

trat
(""" 4m/z+*ff ot Wr:;‘[{m,) A/

Ym 2( ‘77_77-02)&' (wy ay)t Ce(VIw 441)
4”7( Mx -Ax Ufax ‘ax)-V: Z /(7 V)

T -4 l*d
ay q % d t-at
Here U and V  are the X - and é/ —-axes eomponents of the

displacements, C,= P?;E"z)— s Cp= v‘g—(f@‘)' are the longitudinal
and transversal velocities of th elastic waves, m=°J//px 1is the

mesh ratic of the network, 4 'f- ——  /for m>{ [ ies the time

step, E,/-é and - are the elastic modulus, Poisson’s coeffici-
ent and the density of the material, K and { are the abridged
notations for the finite-difference operators. The indeces notation
of the nodes in the vicinity of ( is clear from the figure 2

( Tbeing the abridged notation of the node (X;, Y ) 7‘1

On these segments of the boundary, where the load is given,
the motion equations /transformed in a special way [1] / are writ-
ten out in finite differences as follows, taking into acecount the
boundery conditions:

For the nodes ( on the line parallel to the 2z -axis
REM 1 (2+p)cist’
2fi-cat etz sl (U

(2)

(+0X

41
2czat2 czm.‘* ) 2at’ ny 1*/”/ a?// )
* 14232 Loy Axag/ uar - P AT 2/U’V)t,f-af

/udimf 2cfst?
\ét-,-Z f+C'[°Af A.Z‘?-Ay )]V Tz (Vhox tax t+ } V (3)
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/::faz/f UMI U‘“‘) 2]-’41‘ % ;;:U)(agwij ‘Z((/th at

(,'c {) being the given load on t e boundary.

For the nodes on the line parallel to the -gxis 2 and

gnd ¥V must be interchanged in / 3 /. Anafogous formulae are
obtained [l, 2] for nodes on the oblique segments of the boundary,
for vertices of different kinds, etc,

9

To ensure the stability of this expllcit difference scheme an

error correction of the computed wvalues Ua mast be carried out
[2] on each step at according to the formuiae
ky ST U ) “)
~ “-*ﬂf tost £t

whereU U being the corrected values of the displacements
tMé
/ “X(UV)H A J{( )MH and analogously for | .

Here /( is the correction coefflcien’c which lies in the interval

0,78>k>0,57 for M=0167

Some additional methods to ensure the stability of the diffe -

rence scheme /on the boundary parallel to the I -axis for m>1,4 /
are given in [2] ,

Under known displacements the following formulae serve to deter-
mine the stresses at the nodes [ :

é;éz £ - ([]émx'[jz-ax + U VZ‘My-%\oy)
v M) 4x ST ey

6 = (V*AH -'Vt'-dy N (fua,‘c_[j(-ax) . (5)
PERM) ey M )

v = £ Uiros™ Uray . Viax ™ Viox
xphi=7
¢ 41+ M) ay ox /,

3. The following remark is important for the solution of the
problem under consideration. The displacements 2((x,0,¢), U(x,0,t)
on the boundary being known, the displacements 2[(x 'Aé/ -é) and

V(x, ~Ag ¢) on the pre-contour line /see fig. 1 ,’line &f

are easi etermined, In fact, on the ground of / 3 / and tsking
into account the absence of load on the border of the half-plane,
the displacements at the pre-contour nodes Z[‘ oy 5 Ve are
expressed by /

/m (.{"/u / -M(Uuax*uwx) +

uy 1/“(u +U;

teat t-Af

ZA.')C Uuax cax){ ; (6>
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2 2
Vo 7 (0 0 e Vo) G (Y™ Yoas),

ot t-a

Here the right-hand members contain only values of U and Y known
on the border of the half-plane,

Thus the displacements U and V"  at each moment t are at our
disposal not only on the border of the half-plane but also on the ad-
jacent pre-—contour line of nodes under the footing. All this holds
when there is no dam,

4. In the presence of the dam reaction arises along its foot-
ing from the moment to of the arrival of the displacement wave
front at the footing /see fig. 3 /. At tst, the displacements
on the footing line cd as well as in the dam body are still zero,
but at the adjacent nodes of the half-plane on the line ef they
are already different from zero at o and are determined by
/ 6 /. Therefore, at the moment ¢, stresses /reactions 6, <
arise on the footing line which can be computed by / 5 /. Reactions
6 and¥ which change in the course of time are sources of the disp-
lacement propagation of 4%, a4V in the half-plane.

As all the displacements on the footing line ¢d and in its

vicinity are known at the moments ¢, and ¢t,+at , it is poss-
ible to compute immediately by formulae / 2 / the displacements Uti‘ o’
‘{imt for the moment to+at at the nodes ( on the footing line,
and as follows from / 1 / also the quantities
AY; :‘U; - U; 5 AUL' :.\/i ‘UZ 5 (7)
trat  torat  torat Ttat  tgtat  tprat

which are generated by the reactions. Obviously, the expressions

/ 7/ /where t, is substituted for t /ma.y be used to compute

the quantities AU& »8U;  on the footing line at each t , if only

the isplacements? “U; ., Vi are already determined on the footing
trat tiat

line /see below, / 8 .

5. In accordance with the above the following algorithm may be
be proposed for the solution of the problem,

Let the displacements UL , VL be known at the two consecutive
T The quantitiesdlfjw‘\?}&at the nodes { on the footing line may

be determined by the use of / 3 / and by treating the reactions

6,7 as outside loads on the half-plane boundary. The identity
of 4U and AV determined both by / 3 / and by / 7 / may be easily
established, To do this it is necessary to replace the reactions in
/ 3 / by their expressions in displacements / 5 / s having in view
that the quantities U, 14 referring to the hslf-plane muast be
written in the form 2+AU, U+AV ‘
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moments t,,{,+4¢ in the dam body and on the line of nodes in the
half-plane adjacent to its footing /see fig. 3 , domain D Tbounded
below by the line geff /. Besides, let the quantities AU, 4%
in the half-plane be known at the same moments /see fig. 3 , domain%};
- and & - domains overloap/. In this case the values of Ui ,Vi
in the domain D , except on the line aef 6 s can be compu%e& 466~ ‘
ording to the formulse / 2 / - / 4 / above /and others taken from [1,2}£
The same for the values aU , ¢¥; ~ in the domain ¥  except on the
line cd . To compute the" Values’ l{gd,\{." , on the line cef6 using
the same formulae, as well as the values aUi , Ae}‘d on the line
cd /which is the border of ¥ / the data8be 128king in the vici-
nity of the nodes on these lines.

We can, however, use in both cases the relation / 1 /. As the va-

lues Ui , Vi, are already determined /by formulae / 2 / /, we find

for the node§ | on the footing line cd :
aU =U -w; , oy, =¥ - (8)

teat  trat  trot trat  trat trat
where ?{L e Y, are given. For the nodes ( on the line ef where
Al; ,4u ¢4t gre slready determined /also by / 2 / / we got
teat teat .

U =w +at;, , V. =0 +a7 (9)
teat  trat teat tat ot tat

Here U; , U; are known by / 6 /.

t+at d+at

We proceed analogously, using / 9 / for the nodes outsi the
footing on the segments QC and d§ s Where ?,(,?f are given ;

Thus, for the moment (+4f all the displacements U;, V in the
D -domain, as well as the quantities AU,4V in the ¥ -domain, are
fully determined, and the cycle of operations is repeated after that.

As the initial moment for the computational operations we take

t, /see above/, when all the necessary quantities in both J - end
~domains are known.

Let us add that because of the limitations of computor memory
we may need cutting the network domain by a "conventional boundary"
/see fig. 5 , line k/nsm / which allows the elastic waves to pass

into the half-plane. On the conventional boundary the fallowing app-
roximate relations hold:

for the segment C» AU, =aU; , 8V ,y=27,
and analogously tiat ¢ toat t
for the megments mn, k¢
. = ; . = : 10
AUty =0, Y/ NEYYS (10)
teat t trat

6. Under the unteraction of the elastic domain with the

I The length of each of the segments gc and d6must be not less
than 2ax .
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ideal compressible liquid /see fig. 4 2/ the behavior of the latter is
described by the wave equation Vﬂp:%@ﬁ, where ( 1is the velocity
w

at?

potential, C(, - the sound velocity in the liquid.

For inner nodes ( of the network approximating the liquid this
equation assumes in finite differences the following form [3] :
2 {
G % ! spt;dg ’ %a; "t /<,V 'Y

teat ©a7 ““?)é ) Sf{Af—‘ M/w)l‘,f-a{ ’ (11)
where A%‘, A? are the network steps in the liquid,
27 \ L8 ax
n“—%:‘ (f?>:l/' s AL—-'&'\;: C'J
The stability of difference scheme / 11 / is ensured, as above,
by the operation / 4 /.

Velocities and pressures in the liquid are expressed by the rela-

. _9¥ 0y )
tions Qe =%% ° ay ay Je, j?,, = //JW is the demsity of the

liquid/.

On the contact lines at the common nodes of both networks a con-
dition must be sutisfied of the velocities of both elastic and liquid

9V _ 0
media: 5 2t -_a_‘f’ on the contact line parallel to the X -axis and
%'.Q‘—'%% on zhat parallel to the -axis. In addition, the hyd=s
rodynamic pressure f’w 0¥ is introduced as a normal load on the

contact surface of the elastic domain.

Allowing for all these the equations are set up for the contact
lines, At the nodes ( on the contact line parallel to the X -gxis

the %ua.ntity L., in equation / 11 / must be replaced by the quan—
tity . f?) ; 2
= P& L,C.n
S@_A ~pCmn+ WC’W %a Cmu+p ¢ (nz 29& %d * 9?-4 )‘
¢ 7 ﬁ 1 ,Pw w 7 Jo ﬁ fai- § ¢ ¢
Lo Cu Cymn? _May (12)
Pgmn *P,C 2(1 2V '4;’ max (U*ax

" A T M (VZ*,,I ” I/;-Ax)t]°

The motion equations at the same contact nodes ( are as fol-
lows

I At the nodes ¥ on the contact line which do not coincide with

the nodes of the elastic domain network /node { in fig. 4 /
the quantities QPJ are determined by interpolation.
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Ui =2/1- j;/u(g+/u+ /U'/' (f/u)(?*/")( u»A.Z Ax) (”45/ -4 )t

L ol RGO

6’0 28 p " )
—_—2({+ﬂ“m2)v /“(MI Ax)f mf(VMé/ Vza) E/ Z(UV)HM)
where the qua,ntities U:*dy , V‘*Ay are ot

Ulmy -4y Tax (Vzmx Ve Ax) |
e B

- leP P 2@
g G g s s 2,

Analogous equations are set up for the contact line parallel to
the g -axis, for angular points on the contact line, etc.

The hydrodynamic pressure /f on the border of the half-plane
plays the same role as the reactions along the dam footing, and gene-~
rates in the half-plane displacements AU and 47 as well which
are superimposed on the displacements % and ¥ , The course of
the solution remains the same as above with the sole difference that
together with the J) - and ¥ -domains the domain W appears as
well in which the quantities 50 are determined by / 11 / The
domain W is also bounded by a conventional contour /the line
in fig. 4 / where approximate relations b= hold

]
analogous to /10 /. trat 2

For the nodes ( on the contact line of the elastic foundation
with the liquid /line C,C in fig. 4 / and for those on the line
ejf 8ituated below the formulae / 8 / resp. / 9 / remain valid, on-
ly that the quantities U , Vi entering / 8 / are com-
puted in the contact segnen% c é"’t, as distinct from the footing
segment cd , by / 13 /

As at the moment of the arrival of the displacement wave front
at the contact line, all the necessary values are known to start
the computation for determining the U U

)

7. Thus an algorithm is established to determine the strain-
stress state of the dam if the displacements on the foundation sur-
face in the region of the futu;re dam footing are kmown caused by so-
me seismic action.

A test example was computed for the strain-stress state of a
rectangular dam on the rock foundation /see fig. 5 /. The elastic
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properties of the dam and foundation material are equal. The underlying
data are as follows: wu=0,/67 , Y=m={25, EF=210°7/y
ax .

Dimensions are shown in the figure.,

A segment of the foundation surface at a certain distance from
the dam was exposed to an impuls action of a load @ of duration Sat
which simulated the seismic source,

The displacements in the segment @6 of the half-plane boundary
caused by the "seismic source" in the absence of the dam, These disp-
lacements where used as only initial data for computing the dam in ac-
cordance with the above method, '

As the seismic source is known in this case, the problem of the
wave motion in the dam-foundation domain can be solved in a straight-
forward way by the methods developed earlier [1, 2], and that was
done. The results of both computations coincided exactly. The stress-
to-time curves are shown in fig. J for one of the nodes of .the dam
/point ( /.
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