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ABSTRACT: 
 

Decisions involving complex systems with not well-known properties are complicated by the fact that epistemic uncertainties 
and risk regulations vary over time in an uncertain way. In practice, one often makes approximations by fixing the epistemic 
variables to most likely or worst-case values and ignores future changes in safety constraints. Such simplifications produce 
sub-optimal decisions. We propose a Bayesian framework for decision-making that explicitly accounts for the above random 
fluctuations and obtain numerical results for the optimal seismic design of low-rise and high-rise buildings. As expected, when 
future changes in epistemic uncertainty and regulatory constraints are considered, the optimal level of seismic protection 
exceeds the normative level at the time of construction. 
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1. INTRODUCTION 
 

Many complex technological and natural systems on which we depend are poorly understood. In some cases what is uncertain 
is the functioning of the system, while in others it is the environment in which the system operates. In either case, the risks 
posed by or to these systems are uncertain, due to what is commonly known as epistemic uncertainty or uncertainty due to 
ignorance [1, 2].  Most risk analysts deal with epistemic uncertainty using Bayesian methods [3]. While theoretically well 
founded, such methods are sometimes inappropriately used. This happens mainly when the utility is a nonlinear function of the 
level of risk and one erroneously evaluates the expected utility as the utility at the expected risk [4, 5]. A source of nonlinearity 
is the limit imposed by society on the acceptable risk [6]. The development of decision strategies in the presence of such limits 
is our main objective. For illustration, we consider the optimum seismic design of buildings. Section 2 presents the principles 
of optimal Bayesian decision for seismic design using the theory of Markov models with reward. An application example is 
given in Section 3, followed by conclusions. 
  

 

2. A FRAMEWORK FOR THE OPTIMIZATION OF SEISMIC DESIGN 
 

The seismic safety of a design S relative to some failure event (taken here to be partial or total collapse) is assessed by 
combining hazard and fragility information. The hazard function H(y) gives the rate at which some ground motion intensity at 
the site exceeds various levels y and the fragility function F(y) gives the probability of building failure for different y. When F 

and H are uncertain, the failure rate ∫
∞

−=
0

)()(),( ydHyFHFfλ is also uncertain. For decision applications, what often suffices 

is the failure rate λ f , which is defined as the expected value of λ f (F ,H )  with respect to the epistemic uncertainties on F and 

H [7]. If F and H are independent, 
 

                                                               

λ f = − E[F(y)]E[dH(y)]
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(2.1)

  

 

 

The total failure rate λ f  varies randomly in time due to random variations in the epistemic uncertainty (new models and 

theories, newly collected data, etc.) and in the system properties (for example, due to earthquake-induced damages and retrofit 
actions). Also the regulatory limit, λ f ,max , may vary in time in an uncertain way. We assume that, for the system to be allowed 

to operate at any time t, the safety factor SF (t) = λ f ,max (t) /λ f (t)  must exceed 1. 
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At the time of construction t0, the future rates λ f (t) and λ f ,max (t)  and the future safety factor SF(t) are treated as random 

processes λ f (t | to) , λ f ,max (t | to) , and SF(t|t0) where conditionality on  t0 indicates uncertainty at time t0. It is complicated 

to represent these processes in an accurate way; so some simplification is warranted. We approximate the total process of 
future earthquake events as Poisson with rate equal to the expected rate calculated at time t0. Similar simplifying 
approximations are made for the process of failure events and the evolution of the state of the system. These simplifications 
allow one to use the powerful theory of Markov processes with reward [8, 9], as described next. 
 
 

2.1. The State Vector 
 

The safety factor SF(t) is a fundamental quantity in our analysis. Its random variation in time is due to 
weakening/strengthening of the system, changes in epistemic uncertainty, and changes in the regulatory limit λ f ,max . To 

separate these causes of variation, we express SF(t) as the combination of three frequency ratios: 
 

SF(t) =
λ f ,max (t)

λ f (t)
=

FS (t) ⋅ FR (t)

FE (t)
                                                                     

(2.2) 

 

where )|(/)()( max, ofofS ttttF λλ= , )|(/)()( offE ttttF λλ=  and )(/)()( max,max, offR tttF λλ= . The ratio FS(t)  measures the 

safety of the system at time t using the state of uncertainty at time t0. At time t = t0, FS(to)  equals SF(to), the safety factor at 

the time of construction and may be taken as a basic variable to be optimized in design. For t > t0, FS (t)  tracks the changes in 

system strength due to damages, repairs, and retrofitting interventions. The factor FE(t)  is the ratio of the failure rates of the 

system at time t based on information available at times t and t0. Changes in this factor are caused mainly by variations in 

epistemic uncertainty. Finally, FR(t)  tracks changes in the regulatory constraint on risk. 

 

We view FS , FE  and FR  as components of a state vector that evolves randomly in time. To facilitate calculations, we replace 

these continuous state variables with discrete variables S (for structural strength, with values 1,…,ns), E (for epistemic 
uncertainty, with values 1,…,nE) and R (for the regulatory limit on risk, with values 1,…,nR), and denote by X = [S, E, R] the 

resulting state vector. Each discrete value of X is associated with a specific value of the frequency ratios FS , FE  and FR   in Eqn. 

2.2; see Section 3 for details. Low-case letters x = [s, e, r] indicate specific integer values of X and its components. In dealing 
with state transitions, we generally use primed symbols (e.g. x ') for initial values and double-primed symbols (e.g. x") for 
terminal values. 

 
 

2.2. Structural and Nonstructural Damages 
 

As a result of earthquakes, the system may sustain structural damages. Depending on the repair strategy, the system is returned 
to pre-earthquake conditions or strengthened to a higher level [9]. To save on storage and computation, we condense out the 
structural damage levels depending on what repair is made. This is done by creating a duplicate state variable S* of S and 
considering S = s'  to transition to S* = s" whenever, as a result of structural damages and repairs, the system is brought from 
state s' to state s" . In this way no approximation is made and the number of possible state values is only doubled.  Once in 
S* = s", the system has the same properties as if it were in S = s"  and the roles of S and S* reverse. This is the familiar 
technique to account for repairs in Markov models with reward [8], which we extend here to include multiple possible damage 
levels. In what follows, the S* states are included in the S state variable, which thus has 2ns possible values. 
 

In addition to structural weakening and strengthening, one must consider non-structural losses (including damage to non-
structural building components, economic losses from downtime, social losses from injuries and fatalities etc.). One could use 
additional state variables to track such nonstructural damage conditions, but if damages are instantly repaired and losses are 
instantly incurred one can account for these damages and losses without further augmentation of the state vector X; see below. 
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2.3. State Transitions, Losses and Rewards 
 

Changes in X originate from events of three types: (1) large earthquakes in the region, which may induce damages and 
subsequent repairs and may additionally trigger new studies of regional seismicity and tightening of the safety regulations, (2) 
studies of regional seismicity conducted independently of earthquake occurrences in the region, which lead to changes in the 
epistemic uncertainty, and (3) public safety reviews made independently of the above events, which may lead to changes in the 
acceptable risk level. Events of Type 1 can possibly modify all three state variables, whereas events of Type 2 and 3 affect 
directly only E and R, respectively (but if changes in E and R are such that the regulatory constraints are violated, then also S 
changes due to retrofitting). 
 

To simplify the analysis, we assume that events of different types occur according to independent Poisson processes and that 
the state transitions caused by different events are independent. Then the state vector X evolves in time according to a Markov 

process, discrete in state and continuous in time. For each event type i (i = 1, 2, 3) one must specify the rate λi  and the 

transition probabilities Px' x"
i = Pr[x '⇒ x"|event of Type i]. How these rates and transition probabilities are assigned will be 

explained in Section 3 in the context of a specific application example. 
 

Markov processes with reward allow one to further account for the benefits and costs accrued during the lifetime of the system. 

Such earnings and losses are discounted at a specified rate γ, meaning that 1 dollar earned at a future time t is worth e
−γ (t− to )  

dollars at time t0. While operating in state x, the system earns at a rate εx  (dollars/year). Whenever an event of Type 1 (an 

earthquake) occurs and causes a transition from state x ' to state x", a lump-sum cost Cx' x"
1 , expressed as negative earned 

dollars, is incurred. This lump-sum cost includes structural and non-structural repairs. If the transition x '⇒ x"  can occur 

under different (damage, repair) scenarios, the total transition probability Px ' x"
1  is the sum of the probabilities of all such 

scenarios and Cx' x"
1  is the expected cost over the same scenarios. Similarly, when events of Type 2 or 3 occur, a state transition 

may result due to changes in the calculated risk or in the regulatory limit on risk. If the changes violate the condition SF(t) ≥1, 

the structure must be strengthened according to a specified retrofit policy, at lump-sum costs Cx' x"
2  and Cx' x"

3  (the dollar 

amounts differ from Cx' x"
1  because events of Types 2 and 3 cause no physical damage). We assume that strengthening is done 

instantaneously. 
 

What matters for the present worth of the system is the expected earning rate ex  when the system is in state x, which is found 

from the rate εx  and the lump-sum negative earnings Cx ' x"
i  as ex = εx + λi

i=1

3

∑ Px' x"
i

x"

∑ Cx' x"
i .  The theory of Markov processes 

with reward [8] says that Qx , the expected actualized reward earned in the infinite future by a system that is initially in state x, 

satisfies the following set of linear algebraic equations: 
 

γ + λ( )Qx = ex + λi
i=1

3
∑ Pxx"

i
Qx"

x"

∑
                                                               

(2.3) 

 

where γ  is the discount rate and λ = λ1 + λ2 + λ3  is the total rate of events that can possibly induce state changes. We use these 

asymptotic actualized rewards, incremented by the (negative) cost of construction, to rank alternative designs and repair/retrofit 
strategies.  
 
 

3. APPLICATION EXAMPLE 
 

To illustrate, we consider eight 9-story steel designs for Los Angeles, California. These are a subset of the 12 designs of Wen 

and Kang [10]. We denote the selected designs as S1,...,S8, in order of increasing strength. We also consider nine designs 

S1,...,S9  of a 2-story reinforced-concrete building. Table 3.1 lists some basic characteristics of both the “high rise” and “low-

rise” designs. In both cases, design, S1, just satisfies the regulatory requirements at the time of construction. 
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Table 3.1 Characteristics of high-rise and low-rise designs. 

Design Level 

S 

Period (sec) Mass (tons) Total construction cost TC ($1000) 

High Rise Low Rise High Rise Low Rise High Rise Low Rise 

1 2.32 0.4 5183 219.6 11,056 246 

2 2.06 0.38 5223.8 225.7 11,145 253 

3 1.88 0.35 5267.4 231.8 11,238 259 

4 1.77 0.33 5311.8 237.9 11,333 266 

5 1.66 0.3 5356.1 244 11,426 273 

6 1.57 0.28 5398.7 250.1 11,536 280 

7 1.50 0.25 5440.3 256.2 11,643 287 

8 1.20 0.23 5730.4 262.3 12,300 293 

9 - 0.2 - 268.4 - 300 

 

As in [10], the structural and non-structural damage d caused by an earthquake is described using a seven-point scale: d = 1 (no 
damage), 2 (slight damage), 3 (light), 4 (moderate damage), 5 (heavy damage), 6 (major damage), and 7 (collapse). Each 

damage level corresponds to a range of the maximum interstory drift ratio ∆; see Table 1 of [10, Part II]. Here we use the same 
drift-ratio intervals, except for the collapse state, for which we assume that the minimum drift ratio increases linearly with S, 

from 5% for S1 to 8% for S8  (high-rises) or S9 (low-rises). The drift ratio of ∆  = 0.7% (damage level d = 4) is also the 

threshold for structural damage. Lower drift ratios (damage levels d ≤ 3) involve only non-structural losses. For the drift ratios 
used and the central damage factors associated with different damage levels, see Table 4.2 of Agarwal [11]. 
 

The rate at which each design suffers damage at level d is evaluated using Eqn. 2.1, where y is spectral acceleration at the 
elastic period of the structure. The hazard functions H(y) for high-rise and low-rise buildings are estimated based on the 2002 
USGS national seismic hazard maps and curves. The fragility function F(y) for each building and for each damage level is 
derived using time history analysis (THA) of equivalent single-degree-of-freedom (SDOF) models; for details see Chapter 4 of 
[11]. The functions H(y) and F(y) are used in Eqn. 2.1 to calculate the rate at which each design suffers different damage levels 
d. Table 3.2 presents the damage rates for high-rise designs. For the damage rates of the low-rise designs see Table 4.4 of [11]. 
 

Table 3.2 Damage rates (events/year) for high-rise designs in Los Angeles, California. 

Design Level 
S 

Damage Level d 
FS Ratio 

1 2 3 4 5 6 7 

1 0.0172 0.0597 1.00E-02 1.03E-02 2.16E-03 5.64E-04 9.82E-06 1 

2 0.0281 0.0522 8.52E-03 9.08E-03 1.69E-03 3.87E-04 5.52E-06 101/4 

3 0.0362 0.0470 7.29E-03 7.95E-03 1.26E-03 2.82E-04 3.11E-06 102/4 

4 0.0408 0.0438 6.87E-03 7.29E-03 1.04E-03 2.26E-04 1.75E-06 103/4 

5 0.0441 0.0412 6.69E-03 6.90E-03 9.18E-04 1.94E-04 9.82E-07 10 

6 0.0504 0.0369 6.18E-03 5.75E-03 7.02E-04 1.41E-04 5.52E-07 105/4 

7 0.0539 0.0346 5.85E-03 4.95E-03 5.76E-04 1.14E-04 3.11E-07 106/4 

8 0.0564 0.0329 5.55E-03 4.51E-03 5.30E-04 1.10E-04 9.82E-08 100 

 

The integer levels of the state variables S, E and R for high-rise and low-rise designs correspond to different frequency 

ratios FS , FE  and FR   in Eqn. 2.2. After calculating the exact frequency ratio FS for different designs S, we approximate these 

ratios as simple powers of 10. We then discretize FE and FR for different E and R using similar powers of 10. Specifically, we 

set 4/]2/)1([10 +−= EnE

EF and 4/)(10 RnR

RF
−= where E = 1,…,nE and R = 1,…,nR. The upper limit of S is nS = 8  for the high-rises 

and nS = 9  for the low-rises. In choosing nE and nR, we have imposed that for any value of the state variables E and R there is 

at least one admissible design S. These considerations have led us to set (nE,nR ) to (11,4) for the high-rises and to (17,5) for 

the low-rises; for further details see [11]. Next we describe how we model state transitions due to events of Type 1 
(earthquakes), Type 2 (changes in epistemic uncertainty) and Type 3 (changes in the regulatory constraints). 
 
 

3.1. Transition Rates and Transition Probabilities 
 

For simplicity, we assume that changes in S, E and R due to earthquakes (to events of Type 1) are independent. Hence, using a 

super-script to indicate the causative event type, the transition probabilities Px 'x"
1  have the form 
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Px' x"
1 = Ps's"

1
Pe'e"

1
Pr'r"

1                                                                                  (3.1) 

 

This should be an acceptable approximation if one excludes small events with little chance of producing changes in any of the 
state variables. Here we consider earthquakes whose site intensity is exceeded with rate 

1λ  = 1/(5 yr) and set the probabilities 

in Eqn. 3.1 as follows. We assume that earthquakes initiate changes in the epistemic uncertainty E and the regulatory 
constraints R on average once every 20 and 40 years, respectively. The magnitude of the change is random, but for R we 
assume that the regulatory constraints can only become more stringent (this reflects the general trend towards tightening of the 

codes, although in some cases the safety standards have also been relaxed). The assumed transition probabilities Pe'e"
1  and 

Pr'r"
1  for high-rises and low-rises are listed in Tables 4.5 and 4.6 of [11]. 

 

Earthquake-induced changes in the seismic strength of the building structure S occur when the building suffers structural 
damages (d ≥ 4) and is repaired to the strength of one of the initial designs, or when E and R change and cause the building to 
violate the regulatory constraints, requiring retrofitting. If the system experiences only nonstructural damage (drift ratio less 
than 0.7% and d = 1, 2, 3), the building remains in the pre-earthquake S = s state. This occurs with probability 

Pss
1 = P(d | s)

d=1

3
∑ . If the drift ratio exceeds 0.7% (an event that happens with probability 1− Pss

1 ), the building is repaired to 

some structural state s"  that depends on the repair and retrofit strategies.  
 

The epistemic uncertainty state E may change also due to events of Type 2 (studies of seismic hazard not triggered by 

earthquakes). We assume that also these events occur on average once every 20 years; hence λ2 =1/(20yr). Table 4.7 of [11] 

gives the transition probabilities Pe'e"
2  that are assumed for high-rise and low-rise buildings. Similarly, the minimum safety 

standards may be revised due to events of Type 3 (reassessments not triggered by earthquakes). These events are assumed to 

occur with mean rate λ3 =1/(40yr) and have transition probabilities Pr'r"
3  given in Table 4.8 of [11]. 

 
 

3.2. Costs and Earnings 
 

There are three cost components to be specified: the cost of construction, the cost of structural and non-structural repairs, and 
the cost of retrofitting. In addition one must specify the earning rate of the system and the discount rate.  
 

The total cost of construction for high-rise and low-rise designs are listed in Table 3.1. The maximum difference among 
alternative designs is about 11% for the high-rises and 20% for the low-rises. Table 3.3 presents the cost of repairing damage d 

for the high-rises, Cd|S . This cost, is obtained as the sum of several terms, which include structural and non-structural damage 

and repair, content losses, rental loss, as well as losses from injuries and fatalities. Damage costs for the low-rise designs are 
obtained by reducing the high-rise costs in proportion to the floor area, see Table 4.9 of [11]. We recognize that there is a fixed 
cost of upgrading to make the structural system accessible (this is set to 15% of the total cost of construction of the pre-
earthquake building) and a cost that depends on the amount of upgrading. The latter is set to twice the cost of providing the 

same increased protection in the initial design. At any time, the building is assumed to earn at a fixed rate 
106.0 TC=ε /yr 

irrespective of the state X. Results for cases when the earning rate depends on X are given in [11]. The discount rate for future 
costs and earnings is set to 3% per year. 
 
 

3.3. Numerical Results 
 

First we discuss base-case results and then make sensitivity analyses with respect to future changes in epistemic uncertainty 
and the regulatory limits on safety, and different retrofit strategies.  
 

3.3.1 Base-Case 
 

One can use Eqn. 2.3 to obtain the actualized net rewards Qx  for the base-case parameters and repair/retrofit strategies. In the 

base case, we consider repairing to the larger of the pre-earthquake state and the lowest admissible strength consistent with the 
post-earthquake values of E and R. Alternative designs s are compared using the return per dollar invested, 

ssress TCTCQRPDI
oo

/)( ,, −= , where TCs  is the total cost of construction and eo and ro  are the values of E and R at the  



 6

Table 3.3 Damage cost Cd|S  ($1000) for different high-rise designs and different damage levels. 

Design 
Level 

S 

Damage Level d 

1 2 3 4 5 6 7 

1 0 259 1,428 5,548 14,212 30,089 132,635 

2 0 260 1,432 5,566 14,252 30,161 132,724 

3 0 260 1,437 5,585 14,294 30,235 132,817 

4 0 261 1,442 5,604 14,337 30,311 132,912 

5 0 261 1,446 5,622 14,379 30,385 133,005 

6 0 262 1,452 5,644 14,428 30,473 133,115 

7 0 262 1,457 5,666 14,476 30,559 133,222 

8 0 265 1,490 5,797 14,772 31,085 133,879 

 

time of construction.  The solid lines in Figure 1 show RPDI  for high-rise and low-rise buildings. Levels 7 and 6 are the best 
high-rise and low-rise designs, respectively, with a return on investment of about 70%. 
 

Considering that design S1 already meets current safety standards, these optimal designs may appear unduly conservative. 

Conservatism is dictated by the high likelihood of future adverse changes in the assessed hazard (E) and the regulatory limits 
on risk (R) assumed in the analysis. The risk of violating the regulations in the near future (and to a lesser extent the risk of 
significant damages) decrease for stronger designs and this decrease more than offsets the additional cost of construction. 
 

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

1 2 3 4 5 6 7 8
Design Level

R
P

D
I

Base case

No change in R

No change in R and E

     

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1 2 3 4 5 6 7 8 9
Design Level

R
P

D
I

Base case

No change in R

No change in R and E

 
                                                  (a) High-rises                         (b) Low-rises 
Figure 1 – Return per dollar invested (RPDI) for different initial designs: base case and sensitivity to the future volatility of the 

epistemic uncertainty and the regulatory limit on risk. 
 

3.3.2 Sensitivity to the Future Volatility of the Epistemic Uncertainty and the Regulatory Limits  
 

If one excludes changes in the regulatory environment and thus keeps R constant over time, the expected returns on investment 
become as shown by the dashed lines in Figure 1. The RPDI values increase for all designs, except the strongest ones, which 
also under base-case assumptions never require retrofitting. The gains are especially large for the weaker structures, causing 
some shift in the optimal designs. For the high-rises one is essentially indifferent between designs 6 and 7, whereas for the low-
rises the optimum design becomes 4, with a region of insensitivity between 3 and 7. 
 

If also the epistemic uncertainty (state variable E) is kept fixed over time – a common assumption in seismic design decisions 
[10, 12-14] – then losses come exclusively from damage repair. In this case one obtains the dotted line in Figure 1. For the 
high-rises the region of optimality extends now from design 3 to 7, whereas for the low-rises minimum coverage of the 
regulatory requirements (design 1) becomes optimal, with an expected return on investment above 90%.  
 

The reason why design 1 is not optimal for the high-rises is somewhat complex: high-rises have a lower cost increment from 
one design level to the next (except for level 8) and this should favor the use of stronger structures. However, high-rises have 
long natural periods, which makes damage less sensitive to the strength of the structure and favors weaker designs. A third (and 
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dominant) factor is that high-rise structures are more susceptible to damage than low-rise buildings and for them additional 
seismic protection is more advantageous. These issues are discussed in further detail in [11]. 
 

In their approach to optimal seismic design, Wen and Kang [10] neglect regulatory constraints and rank the designs according 
to the expected actualized cost C. In their formulation, future changes in the assessed risk are inconsequential. To compare with 
the present methodology, we calculate RPDI in the present method for the case when E and R do not change in time and obtain 
the expected actualized cost in Wen and Kang’s approach for the initial costs, damage rates, damage costs and discount rate 
used to compute RPDI. Figure 2 shows the RPDI values divided by the RPDI of the optimum design (RPDImax) and Wen and 
Kang’s expected cost  of the optimum (Cmin) divided by the expected cost C (in the figure, we call these normalized quantities 
“benefit indices”). As the Wen and Kang method does not account for future earnings, the comparison is only qualitative, but 
results are in generally good agreement. In particular, the optimum high-rise and low-rise designs are the same. 
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                                                  (a) High-rises                        (b) Low-rises 
Figure 2 – Comparison of the relative economic value of different designs using the present model with no change in E and R 

and the model of Wen and Kang [10]. 
 

3.3.3 Changing the Retrofitting Strategy 
 

Figure 3 shows the return on investment of high-rise and low-rise designs for different retrofitting strategies. In the base case, 
retrofitting strengthens the structure to the minimum level required by the regulations that apply at the time. The alternative 

strategies retrofit to a level no less than Smin , where Smin  = 5, 6, 7, or 8. Providing this extra level of protection may be 

preferable to retrofitting by minimum allowed amounts, due to the high fixed costs of retrofitting and the possibility of needing 
additional retrofit interventions in the future. The rationale is similar to that for choosing an initial design that is conservative 
relative to the minimum seismic protection required by regulations. 
 

Figure 3 shows that conservative retrofitting strategies are generally superior to minimal retrofitting. In particular, using Smin  = 

7 typically outperforms other choices of Smin . For the high-rises, the global optimum is still attained for initial design 7 (for 

this design, Smin  is ineffective). However, for the low-rises the optimal initial design is lowered to 4. This means that for the 

low-rises it is best to choose a relatively weak initial design ( S4 ) and then upgrade to S7 if and when needed, rather than 

making a larger initial investment and directly designing for level 7. 
 

Agarwal [11] presents additional sensitivity results with respect to the costs of construction and retrofitting, the level of 
seismicity in a region and the repair strategies. 
 
 

4. CONCLUSIONS 
 

The introduction of regulatory limits on the acceptable risks causes the utility of a decision to be a non-linear function of the 
risk. In this case it is necessary to make decisions accounting for the possible future evolution of the epistemic uncertainties. 
The net effect is that optimal designs tend to be more conservative than those based on the assumption that uncertainties remain 
the same during the lifetime of the project. Another consequence is that sequential (wait-and-see) decisions become superior to 
one-time (here-and-now) decisions. 
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Figure 3 –Dependence of RPDI on the retrofitting strategy. 
 

We have proposed a framework for decision-making that explicitly accounts for the random temporal evolution of the 
epistemic uncertainties and minimum safety standards and illustrated the effects of these factors on the optimal design of low 
and high-rise buildings against earthquake loads. Accounting for future changes in epistemic uncertainty and regulatory 
constraints makes the optimal initial design more conservative than when these future changes are ignored. Some of the 
parameters used in the numerical examples were judgmentally assigned. A more detailed and objective derivation using data or 
models would make the conclusions more useful in practice.  
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