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ABSTRACT: Discrete-time rational approximation (DRA) of foundation frequency response is the first step of 
a systematic procedure for constructing various time-domain recursive evaluations (TDREs) in foundation 
vibration analysis. The stability and accuracy of DRA determine those of its TDREs as realization. In this paper, 
the stability and identification of DRA are studied. The DRA can be obtained from a continuous-time rational 
approximation (CRA) of foundation frequency response. If letting the discrete-time frequency equal to the 
continuous-time one, the high-frequency loss and the aliasing may occur due to the periodic nature of DRA. To 
avoid these, the bilinear transform is used in this paper, so that the stability and accuracy of the resulting DRA is 
identical with those of CRA. The stability conditions of DRA are stated in z-plane. The resulting DRA is 
realized as the direct-form and parallel-form TDREs. The effectiveness of bilinear transform method is verified 
by analyzing several typical foundation vibration problems using the resulting TDREs and comparing with the 
results of lumped-parameter models (LPMs) resulting from the same CRA.  
KEYWORDS: foundation vibration, recursive evaluation, discrete-time rational approximation, bilinear 
transform 
 
 
1. INTRODUCTION 
 
In an accompanying paper [1] the stability and identification of continuous-time rational approximation (CRA) 
of foundation frequency response realized as various lumped-parameter models (LPMs) are studied. 
Alternatively, the foundation frequency response can be also represented by a rational function in z variable of 
z-transform in discrete-time case. Such rational function is here called as discrete-time rational approximation 
(DRA), that can be realized as various types of time-domain recursive evaluations (TDREs). The stability and 
identification of DRA are studied in this paper. The DRA can be obtained via two paths: directly from 
foundation frequency response [2-4] or indirectly from CRA [5, 6]. This paper concentrates on the second. A 
practical difficulty in obtaining DRA from CRA with identity of discrete-time and continuous-time frequencies 
is that the high-frequency lost and aliasing may occur due to the period nature of DRA. (Actually, the 
high-frequency lost will also occur in the first path mentioned above.) To avoid these, the bilinear transform 
method is used in this paper. 
 
Unlike foundation-soil system and its LPM, the interinvertible systems of a TDRE are two different linear 
time-invariant discrete-time (LTID) systems: TDRE of impedance force from foundation displacement with 
dynamic-stiffness-form DRA (SDRA) as frequency response and TDRE of response displacement from 
foundation force with dynamic-flexibility-form DRA (FDRA) as frequency response. TDREs of impedance force 
are widely studied and used to compute the interaction force of foundation in time-domain 
soil-structure-interaction analysis.  
 
 
2. DISCRETE-TIME RATIONAL APPROXIMATION 
 
 
2.1. Continuous-Time Rational Approximation 
 



A stable and accurate CRA of foundation frequency response can be obtained from the accompanying paper [1]. The 
dynamic-stiffness-form CRA (SCRA) can be written as (Eqn. 2.1 in [1]) 
 

N
N

N
N

CC sqsq
spsp

SsSS
+++

+++
==

+
+

...1
...1

)()(
1

1
11

0ω                         (2.1) 

 
where S0 is the static stiffness, s  is the dimensionless complex frequency, ωis =  here, 1−=i , Scdωω =  is 

the dimensionless continuous-time frequency with the conventional Fourier radian frequency ω , the characteristic 
length d (of foundation) and the (shear) wave velocity cS (of soil), and  are the real parameters. It is clear that 

SCRA is singular at high-frequency limit, i.e. 
jj qp ,

∞→∞→ )(sSC . Therefore, if applying the bilinear transform to Eqn. 

2.1 directly, a marginally stable pole  of the resulting SDRA will be obtained. To avoid this, Eqn. 2.1 is 
decomposed into a sum of a linear term and a new rational function without singularity that is called as SCRA 
without singularity and denoted by 
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where NN qpc 1ˆ +∞ = , and  for 1ˆˆ −∞−= jjj qcpp Nj ,...,1=  with the definition of . Thus, the bilinear 

transform can be applied to Eqn. 2.3, and the linear term is modeled by a dashpot. Correspondingly, the 
dynamic-flexibility-form CRA (FCRA) can be written as (Eqn. 2.2 in [1]) 
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where F0 is static flexibility. The bilinear transform can be applied to Eqn. 2.4 without any special treatment required. 
 
 
2.2. Bilinear Transform 
 
A bilinear transform relation between the dimensionless complex frequency s  and the z variable of 
z-transform is 
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where dtct SΔ=Δ  is the dimensionless time-step size, )exp()exp( titiz DD Δ=Δ= ωω  with the discrete-time 
frequency Dω  and corresponding dimensionless discrete-time frequency SDD cdωω = . The bilinear 
transform converts the imaginary axis in s -plane ( ωis = ) into a unit circle in z-plane ( 1=z ). The left- and 
right-half plane in s -plane map into the inside and outside of the unit circle in z-plane, respectively. 
Substituting ωis =  and )exp( tiz DΔ= ω  into Eqn. 2.5, the relation between the dimensionless 
continuous-time frequency ω  and the dimensionless discrete-time frequency Dω  is obtained as 
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It is clear that ω  is a periodic function of Dω , where the period is just that of DRA, i.e. tΔ= πω 2max . Thus, 
∞<<∞− ω  is compressed into 2/2/ maxmax ωωω ≤≤− D  without any lost of accuracy and then the periodic 

extension is performed. Therefore, the aliasing and high-frequency lost are avoided.  
 
Substituting Eqn. 2.5 into Eqn. 2.3, SDRA without singularity is obtained as follows 
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where the parameters  and  can be obtained from  and  by simple computation. Note that  

and  are dependent of the time-step size. Correspondingly, substituting Eqn. 2.5 into Eqn. 2.4, FDRA is 
obtained as follows 
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where the parameters  and  can be obtained from  and  by simple computation, and are also 
dependent of the time-step size. 
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2.3. Partial-Fraction Expansion 
 
The real-parameter partial-fraction expansion of SDRA without singularity can be written as 
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where  and  are the poles of jŝ jÂ 0)(ˆ SzS D  and the corresponding residues, respectively, L1 denotes the 

number of pairs of complex conjugate poles, and , 11
ˆ2ˆ

jj A=β ( )12112 ˆˆˆˆ2ˆ
jjjjj sAsA +−=β , 11 ˆ2ˆ jj s−=α  and 

 with the complex conjugate poles  and their residues . 
Similarly, the real-parameter partial-fraction expansion of FDRA can be written as 
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where  and  are the poles of js jA 0)( FzFD  and the corresponding residues, respectively, L2 denotes the 

number of pairs of complex conjugate poles, and , 11 2 jj A=β ( )12112 2 jjjjj sAsA +−=β , 11 2 jj s−=α  and 

 with the complex conjugate poles  and their residues . Note 
that as all existing works and continuous-time case do, the repeated poles are not considered in Eqn. 2.9 and 
2.10 due to no appearance nearly.  
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2.4. Stability 
 
The stability of the resulting DRA based on bilinear transform is identical with that of CRA. The equivalent 
stability conditions can be restated in terms of the location of the poles of DRA in z-plane, as follows: 
(1) A TDRE of impedance force is dynamically stable if and only if all poles of its SDRA without singularity lie 
inside a unit circle in z-plane, i.e. 1ˆ <js  for Nj ,...,1= . 

(2) A TDRE of response displacement is dynamically stable if and only if all poles of its FDRA lie inside a unit 
circle in z-plane, i.e. 1<js  for 1,...,1 += Nj . 

 
 
3. TIME-DOMAIN RECURSIVE EVALUATIONS 
 
 
3.1. Direct-Form TDREs 
 
Applying the inverse z-transform to Eqn. 2.7, the TDRE of impedance force is obtained as 
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where the superscript n denotes the instant tnΔ  or tnΔ . The foundation impedance force can be further 
obtained by discretizing the inverse Fourier transform of Eqn. 2.2. Correspondingly, applying the inverse 
z-transform to Eqn. 2.8, the TDRE of response displacement is obtained as 
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3.2. Parallel-Form TDREs 
 
Addressing each term of Eqn. 2.9 identified by j separately and applying the corresponding inverse z-transform, 
the TDRE of impedance force is obtained as 
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with the formulas for first- and second-order terms, respectively, as 
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where  and  are the auxiliary variables introduced. Correspondingly, for Eqn. 2.10 the TDRE of 
response displacement is 
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with the formulas for first- and second-order terms, respectively, as 
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4. NUMERICAL TESTS 
 
The effectiveness of bilinear transform is verified by numerical tests in this section. According to the concept of 
system realization, the stability and accuracy of a TDRE are identical with those of its DRA, and a LPM 
identical with its CRA which has been also verified via numerical tests in paper [1]. On the other hand, the 
theoretical analysis for the bilinear transform indicates that the stability and accuracy of the resulting DRA are 
identical with the CRA. Therefore, we need only verify the identity of time-domain results of TDRE and LPM 
here. The examples in paper [1] are re-analyzed by using TDREs in time domain, but here the explicit central 
difference method is used for soil-structure-interaction analysis. 
 
The example of rocking circular foundation on half-space elastic soil has been used to verify the stability theory 
of CRA in [1]. For the case of N=2, The TDREs of impedance force and response displacement corresponding 
to CRAs in Table 1 of [1] are listed in Table 1 and 2, respectively. Their time-domain results are shown in Figure 
1 and 2, respectively. For the case of N=3, the results see Table 3 and 4, and Figure 3 and 4 based on Table 2 of 
[1]. It can be seen that in each case the time-domain results of direct- and parallel-form TDREs are identical and 
also identical with the result of Wu-Lee LPM, which indicates effectiveness of bilinear transform. 
 
The example of semi-infinite rod on elastic foundation has been used to verify the accuracy of identification for 
CRA in [1]. For performing time-domain soil-structure-interaction analysis, TDREs of impedance force based 
on CRAs in Table 3 and 4 of [1] are listed in Table 5. The time-domain results are shown in Figure 5. It can be 
seen that in each case the time-domain results of TDREs are identical with that of Wu-Lee LPM, which 
indicates effectiveness of bilinear transform. 
 
 
5. CONCLUSIONS 
 
The stability and identification of DRA of foundation frequency response realized as TDREs are studied in this 
paper. Some conclusions are summarized as follows: 
(1) The accuracy and stability of DRA determine those of the resulting TDREs.  
(2) The interinvertible systems of TDRE are: the TDRE of impedance force from foundation displacement with 

frequency response SDRA and the TDRE of response displacement from foundation force with frequency 
response FDRA.  

(3) DRA can be obtained from a CRA by bilinear transform. The bilinear transform guarantees the identical 
stability and accuracy between the resulting DRA and corresponding CRA, so that avoids the 
high-frequency lost and the aliasing. The stability conditions for CRA are restated in terms of the resulting 
DRA in z-plane. 

 
 
 



 
 
 
 
Table 1 TDREs of impedance force based on CRAs  

in Table 1 of [1] (N=2, 005.0=Δt ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

                                           Figure 1 Time-domain results of TDREs in Table 1 
 
 
 
Table 2 TDREs of response displacement based on  

CRAs in Table 1 of [1] (N=2, 02.0=Δt ) 
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Figure 2 Time-domain results of TDREs in Table 2 
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Table 3 TDREs of impedance force based on CRAs  

in Table 2 of [1] (N=3, 005.0=Δt ) 
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Figure 3 Time-domain results of TDREs in Table 3 

0 5 10 15 20 25 30
-2

-1

0

1

2

 Direct-form TDRE
 Parallel-from TDRE
 Wu-Lee LPM

 

 

D
im

en
si

on
le

ss
 m

om
en

t/1
043

Dimensionless time

(I, III)

 (Ⅰ, Ⅲ) (Ⅱ, Ⅳ and 1−=e ) 
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Table 4 TDREs of response displacement based on  

CRAs in Table 2 of [1] (N=3, 02.0=Δt ) 
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Figure 4 Time-domain results of TDREs in Table 4 
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Table 5 TDREs of impedance force based on CRAs  
in Table 3 and 4 of [1] ( 005.0=Δt ) 
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