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ABSTRACT : 

A scaled physical model of a nonlinear elastic moment resisting frame is designed and tested both statically and 
dynamically with the aim to validate a numerical model as well as confirm the global properties of this type of 
structures. The nonlinear stiffness of this type of structures is verified through a static pushover test. Dynamic 
properties such as the amplitude dependent of the natural frequency are identified. Equivalent viscous damping 
properties of the physical model are evaluated for a set of different amplitudes through free vibration tests. The data 
retrieved during physical experiments is used to update a distinct element numerical model of the physical test 
frame. 
The physical model is tested under a large number of real ground motion time histories to evaluate the robustness of
the structural form. Selections of these tests are run through the updated numerical model to estimate how well the 
numerical model emulates the physical model. An example of a time history analysis is presented, showing a good 
comparison between the physical model and the best numerical model. The best numerical model manages to 
estimate quite well the amplitude and time of the peak response of the structure to the ground motion. 
 

KEYWORDS: Damage resistant, Self-centring, Nonlinear elastic, Post-tension, Joint, Distinct element 

 
 
1. INTRODUCTION 
 
Earthquake resistant design as practiced to day, for example in USA and Japan, has succeeded in reducing the 
number of casualties during large seismic events however the economical losses are still vast. An example of an 
recent event is the Northridge earthquake in 1994 with only 57 casualties but around $50 billion in economical 
losses (Porter, 2006). The financial losses during large seismic events have pushed the engineering practice towards 
damage resistant structures. Nonlinear elastic moment resisting frames, where deformations are localized in joints 
between structural elements, remain undamaged despite large deformations.  
Although nonlinear elastic moment resisting frames have been researched extensively over the last 15-20 years, 
there is still uncertainty regarding how these structures will behave under dynamic loading. Large numbers of 
experiments on confined beam-column assemblies, tested under cyclic loading up to failure, have been carried out. 
Phase III of the PRESSS project dealt with Pseudo-dynamic testing on a 5 story 2 bay model building at 60% scale. 
All the experimental results carried out for this class of structures were very promising, only a minimal amount of 
damage was normally observed up to design level (Priestley, 1999). 
To develop a comprehensive understanding of the dynamics of this class of structures a scaled physical model of a 
frame utilizing this type of connections between structural elements is constructed. The physical model is utilized to 
determine the characteristics of the structure under static and dynamic loading. The data retrieved during the 
physical experiment is then used to update a distinct element numerical model of the physical model. 
Finally the validity of the numerical model is explored during nonlinear time history analysis where the input motion 
is a real earthquake time series. 
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2. EXPERIMENTAL MODELS  
 
Numerically it has been identified that nonlinear elastic frames, having dry joints, where elements are connected 
solely through post tension, exhibit some typical features of nonlinear dynamic systems (Oddbjornsson, 2007).
The numerical modelling was done utilizing UDEC (Itasca, 2004) a commercial distinct element software. 
Properties such as damping, joint stiffness and friction had to be determined from available literature. From this 
numerical modelling, properties such as tendon tension force changes, joint shear displacements and joint contact 
area were identified to increase the understanding of the mechanics of this type of structures. The frame 
force-deflection curve was identified to assess the global stiffness of this type of frame. A scaled physical model 
of a nonlinear elastic moment resisting frame is designed and built. The purpose of this was to confirm the 
existence of various features identified in the numerical simulations. The frame selected for experimental 
modelling is a single bay single storey portal frame. The numerical simulations suggested an extremely complex 
system that included both joint opening and sliding as well as variations in tendon loads. This intricate behaviour 
resulted in features such as nonlinear resonances, quasi-periodicity and perhaps chaos. Thus, it was considered 
prudent to fully understand a simple physical model before progressing onto more complex structures. The 
mechanics of this scaled model are explored statically and dynamically through both physical and numerical 
experiments. 
 
 
2.1. The Physical Model  
 
The physical model is a quarter scale model based on a typical rather light weight portal frame building prototype;
where the scaled model represents a single bay and a story from that building. The prototype to model scaling 
follows artificial mass simulation modelling rules (Harris, 1999). The model frame bay width, column centre to 
column centre, is 2100mm. The height from base to centre of the beam is 900mm. The 2t mass on top of the two 
frames represents the scaled applied load on the beams. The detailed design of the model building was done 
according to design guidelines presented as a part of the PRESSS research program; this structural form was first 
proposed by (Stanton, 2002). Following the design guidelines assuming 100mm initial contact height, a tendon 
tension and cross section of 115kN and 93mm2 for beam tendons and 64kN and 52mm2 for column tendons are 
determined. The elements of the model frame are made from 100x100x10mm steel square hollow section rather 
than concrete as in the PRESSS building. This material selection does not influence the global behaviour of the 
system since deformations are restrained to the joints between elements and elements remain elastic through out 
the design range. The initial contact area at each joint is 100x100mm in size and the contact surface is steel to 
steel. Before assembly all the contact areas where ground in the same way to generate as uniform contact 
properties as possible.  
 

 

(a) 
 

(b) 
 

Figure 1 Experimental models, (a) Numerical model, (b) Physical model 
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2.2. The Numerical Model  
 
A distinct element numerical model of the small scale test frame is generated in UDEC, commercial distinct 
element code software. The numerical model, consisting of 4 deformable blocks connected together with 3 cable 
elements, represents one of the two frames of the scaled physical model. The mass on top of the numerical model is set 
to half the total mass of the physical model and the tendon properties are selected as equal as those of the physical 
model. The elastic modulus of the beam and the columns of the numerical model is adjusted such that axial and moment 
stiffness are the same as in the physical model. Unknown parameters of the system such as joint shear and normal 
stiffness as well as frictional properties and global damping are selected from literature as a first guess and then updated 
to fit the experimental data. 
 
 
3. SYSTEM EXPLORATION  
 
A simplified analytical model of this type of structures is essential to explore the global dynamics of complex 
structures utilizing these joints. A distinct element model although capable of modelling this type of structures is 
just too slow. The computational analysis (on a 3400Mhz Pentium 4) takes about 2-3days. This is for a time 
history analysis of just 25s on this single portal frame model. To generate a simplified analytical model of this 
type of joints and jointed structures, it is essential to explore the system mechanics. A validated distinct element 
numerical model as well as a physical model are necessary to understanding the mechanics of these joints. In the 
following two subsections the mechanics of the system are explored both statically and dynamically and unknown
parameters of the numerical model adjusted to fit the physical model data.  
 
 
3.1. Quasi Static 
 
The nonlinear force deflection characteristics of the frame are determined through a quasi static pushover test for 
both the numerical model and the physical model. The physical model is pulled back by a hydraulic actuator while 
the force and deflection changes are monitored. The numerical model is pulled back by an incrementally 
increasing load and the relative displacements recorded. This is done while varying unknown parameters such as 
joint stiffness and frictional forces. By trial and error it is determined that the key parameters controlling the force 
deflection properties of the frame are initial tendon tension, tendon stiffness, contact height and joint normal 
stiffness. Out of those parameters the only unknown is the joint normal stiffness initially selected as 10 times the 
stiffness of adjoining elements as recommended in the UDEC manual (Itasca, 2004). By adjusting the joint normal 
stiffness it is possible to match the numerical data to the physical data retrieved during physical pushover tests, the 
constant joint normal stiffness values explored are listed in table 3.1. 
 

Table 3.1 Joint normal stiffness  
Model Joint Normal Stiffness [GPa/m]

Low Stiffness 14 
Medium Stiffness 25 

High Stiffness 45 
 
It is obvious from figure 2 (a), where the nonlinear pushover curves for the physical model and the numerical 
model are displayed, that the numerical model with low joint normal stiffness fits the physical model well at low 
amplitude but is too soft at high amplitude. The numerical model with the high stiffness fits well at high amplitude 
but is too stiff at low amplitude, the medium stiffness value generates the best fit with a constant stiffness but it is 
still not a good fit. A review of papers dealing with contact normal stiffness suggests that contact normal stiffness
are nonlinear, softer initially and then harden up (Krolikowski, 1991). By introducing a nonlinear joint normal 
stiffness that is equal to the low stiffness under low stress and shifts to the high stiffness value under high stress, it 
is possible to fit the pushover curve from the physical experiment almost perfectly. The beam tendon tension force 
change is monitored for both numerical and physical models, the tendon force sway relation is displayed in figure 
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2 (b). The best fit numerical model for the beam tendon tension force is the one with the nonlinear joint normal 
stiffness, same as for the pushover curve.  
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Figure 2 (a) Pushover curve, (b) Beam tendon tension force 
 
 
3.2. Dynamic 
 
Dynamic free vibration tests are utilized to determine the natural frequency amplitude as well as the damping 
amplitude properties of the system. A free vibration test is conducted on the physical model by pulling it back by a 
hydraulic actuator attached by a reduced diameter stud working as a fuse, breaking when the structure reaches a 
certain displacement, depending on the stud diameter. The natural frequency of each half cycle is then evaluated 
by determining the time between zero crossings of the displacement signal and assigned to the absolute maximum 
response of the system during that half cycle. Figure 3 (a) shows the frequency amplitude relationship of the 
physical model, as expected the frequency is lower at high amplitude i.e. when the system is softer. 
The equivalent viscous damping ratio for the system is determined through logarithmic decrements, determined
from the change in maximum response of the system during each cycle. To reduce the influence of noise, the 
average damping ratio over 3 cycles is determined as 
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The relationship between equivalent viscous damping ratio and amplitude is displayed in figure 3 (b). The 
relationship is rather complicated with maximum damping at medium amplitude and lower damping at high and 
low amplitude. 
To get the damping properties of the numerical model to emulate the physical model as well as possible it is 
necessary to understand the cause of damping in the numerical model. The numerical model dissipates energy 
through frictional movements of the joints as well as with additional Rayleigh numerical damping. Mass 
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proportional Rayleigh damping is the only practical options, stiffness proportional is too slow. The problem with 
the Rayleigh damping is that a damping frequency as well as damping ratio has to be selected. Through trial and 
error, a mass proportional Rayleigh damping ratio of 2% at 10 Hz is selected. A numerical free vibration test,
where the frame is loaded up quasi statically and then put into a dynamic free vibration, is conducted for all the 
numerical models having different joint normal stiffness. The data from the numerical free vibration tests is 
processed in the same way as the physical experimental data; the results are displayed in figure 3.  
As would be expected the results for the natural frequency amplitude relationship, of the numerical model with the 
nonlinear contact stiffness, fits the physical model data best. The damping properties of the numerical model are 
not capable of modelling the complex damping properties of the physical model properly. Complicated damping 
properties of the physical model, such as friction between tendon and element as well as the friction between wires 
of multi strands, are not modelled in the numerical model. 
The nonlinear resonance response curve of the physical model is determined though a sine frequency sweep. The 
ground acceleration is kept constant and the frequencies are swept from low to high and vice versa. Figure 4 
shows the nonlinear resonance response curve of the physical model for ground acceleration of different 
amplitudes. The plot shows a jump from upper to lower branch of the resonance response curve and vice versa. 
This phenomenon is a well known artefact of nonlinear softening systems (Thompson, 2002).  
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Figure 3 (a) Frequency amplitude characters, (b) Damping amplitude relationship 
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Figure 4 Resonance response curves (a) Raw experimental data, (b) Fitted experimental data 
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4. GROUND MOTION RESPONSE  
 
The dynamic behaviour of the physical model is explored for a wide range of real ground motion time histories. 
With the aim of evaluating the performance as well as the robustness of this structural form these ground motions 
are applied at different amplitudes. An example with a time history of the ground motion from Loma Prieta (1989) 
earthquake is presented here. 
 
 
4.1. Physical Experiments 
 
The performance of the physical model to ground motions is monitored during hundreds of tests at different 
amplitudes. The overall performance of the model is good, with no degradation during tens of hours of testing. A 
failure of a single wire in a multi strand happened during testing. This did not influence the global dynamics, it 
was even possible to stop the shaking and replace the multi strand without collapse or permanent damage. Joint 
sliding effects during a seismic time series have negligible influence on the mechanics of the system. 
An example of the response of the physical system to the Loma Prieta ground motion at 105% amplitude, shown 
in figure 5, is presented. The absolute maximum relative response of the physical model and the time at which the 
response occurs is presented in table 4.1. The frequency content of the relative response to the earthquake is 
presented in figures 6 and 7 (a). 
 

Table 4.1 Model response to ground motion  
Model Absolute Maximum Response [mm] Time [s] 

Low Stiffness 26 10.91 
Medium Stiffness 22 10.89 

High Stiffness 18 10.88 
Nonlinear Stiffness 15 10.73 

Physical Model 14 10.71 
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Figure 5 Table ground motion Loma Prieta 

 
4.2. Numerical Experiments 
 
In section 3, the validation of the numerical models has been explored for both quasi static as well as simple free 
vibration dynamic tests. It has been shown that the numerical model with the nonlinear joint normal stiffness 
emulates the physical model quite well but not perfectly. To evaluate how much the numerical and physical 
models differ for stochastic ground motion, numerical time history analyses are conducted. 
The Loma Prieta ground motion time series presented in figure 5 is applied to each of the four numerical models 
and the relative response of the system to the input motion determined. This is a very time consuming process with 
each time history analysis taking about 3 days. The absolute maximum response and its temporal ordinate is 
presented in table 4.1. The best numerical model is the one with the nonlinear joint normal stiffness as expected. 
The frequency content of the relative response to the earthquake is displayed in figures 6 and 7 (a) for each of the 
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models. As before the model with the nonlinear contact stiffness performs best. To determine how well the 
response of the numerical model matches with the physical model the magnitude squared coherence between the 
time series is determined. Figure 7 (b) displays the coherence between the physical and the numerical models. The 
coherence is highest for the numerical model with the nonlinear normal joint stiffness. 
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Figure 6 Power spectral density of each model 
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Figure 7 (a) Frequency response to ground motion, (b) Coherence between physical and numerical models 
 
 
5. CONCLUSIONS 
 
A scaled physical model, of a nonlinear elastic frame assembly, is designed and tested both statically and 
dynamically. Thus, the underlying mechanics observed numerically have been qualitatively verified. The test 
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results from the physical model are then used to update and evaluate a distinct element numerical model of the 
physical model. First the numerical model is updated by comparing response under a quasi static pushover test and 
a free vibration test. When the numerical system parameters have been adjusted to represent the physical model as 
well as possible, the system is evaluated under stochastic ground motion. 
The quasi static pushover test of the physical model confirms the nonlinear softening stiffness characteristics of 
the system. The nonlinear elastic softening system exhibits two simultaneous coexisting solutions over a wide 
range of frequencies. The system can jump between the high amplitude and the low amplitude solutions. This 
behaviour is a well-known feature of a softening system, such as the Duffings oscillator (Thompson, 2002).  
Through a free vibration test of the physical model the change in natural frequency with response amplitude is 
verified. From the free vibration data the equivalent viscous damping of the system is also extract and the damping 
relationship with amplitude determined.  
The quasi static mechanics of the numerical model with the nonlinear normal joint stiffness fit the physical data 
very well, suggesting that the joint normal contact stiffness of the physical model is definitely nonlinear. Further 
physical tests are required to fully explore this nonlinear joint contact stiffness. Since the frequency amplitude 
relationship is primarily controlled by the stiffness of the system it is no surprise that the numerical and physical 
data fit well. The nonlinear contact function used in UDEC was bi-linear. It is suggested that an even better fit 
might be achieved by introducing a smoother nonlinear contact stiffness function.  
The numerical and physical models differ most in damping representations. Since we are bound by the damping 
model available in the distinct element software a match is unlikely to be achievable. Even so, the results 
presented, in figures 6 and 7 show qualitatively similar responses. The peak response measures in table 4.1 also 
show a good match. 
Future publications introducing a simplified analytical model of these types of structures shall be presented; these 
models shall be based on nonlinear system identification of experimental data. 
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