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ABSTRACT : 
 
Feasibility of earthquake early warning systems (EEWS) depends on the possibility of immediately detecting 
the earthquake’s characteristics and on the ability to design applications for real-time seismic risk mitigation. 
Rapid estimation of event’s features (as magnitude and location) is the focus of real-time seismology; the 
second issue requires particular attention of engineers. Among the information needed to design EEW 
engineering applications (and to evaluate the effectiveness of EEWS) there is the estimation of the available 
time to perform security actions before the arrival of the more energetic seismic phase at the site of interest; this 
interval is termed lead-time. The study presented herein examines the distributions of the available lead-time in 
the Campania (southern Italy) region. The study considers events occurring in the area covered by the ISNet 
(Irpinia Seismic Network) infrastructure and assumes a spatially-uniform distribution for the hypocenters. 
Under these hypotheses the minimum, maximum and average lead-times were computed. Also the uncertainties 
associated to the information provided by the ISNet are considered in order to evaluate the lead-time; in fact, 
there is a trade-off between the amount of warning time and the level of information available to predict the 
peak ground shaking. Results of the analyses, presented in form of maps, confirm that evacuation of building is 
hardly possible in the region, although the available warning time seems to be sufficient to activate personal 
and/or automated security measures. 
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1. INTRODUCTION 
 
It is almost an achieved goal that, in the case of an earthquake, distributed seismic monitoring infrastructures 
can be used to effectively spread the alarm in advance to a broad audience via traditional media. For example, 
on 1st October 2007 the Japan Meteorological Agency (JMA) started providing residents in Japan with 
earthquake early warnings through media such as TV and radio. Other EEWS are currently under development 
or have been operational for experimental purposes in countries as Mexico, Taiwan, and Turkey. These systems 
are made of distributed seismic stations and use a variety of techniques to assess the real-time hazard associated 
with an earthquake and to deliver the warning information to end users. However, there is still a challenge for 
both engineers and seismologists to develop integrated systems able to effectively reduce the seismic risk in 
real-time in areas where the available warning time is low and the risk mitigation actions should be automated. 
This is the case, for example, of the Campania region (southern Italy). 
Campania, being 13.595km² wide, is the twelfth largest region in Italy, but 5.8 million inhabitants make it the 
second most populous, and the most densely populated. At the same time, the most hazardous seismogenic 
source in the region is close, if not overlapped, to densely urbanized areas. In fact, high macro-seismic intensity 
earthquakes occurred over the centuries.  
Campania was recently provided with an advanced regional seismic sensors network, also devoted to earthquake 
early warning purposes. The Irpinia Seismic Network (ISNet) is a modern infrastructure at the core of the 
ongoing EEWS, under development in southern Italy. The main targets of the network are: to monitor the 
activity of the area with a significant seismic potential, to provide real-time alerts to selected targets for 
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moderate-to-large earthquakes, and to measure/estimate in near-real-time (in the immediate post-event) ground 
shaking in the region. 
ISNet is a local network of strong motion, short period and broad band seismic stations deployed in a 100 x 
70km2 area along the southern Apenninic chain, covering the epicentral area of the main earthquakes that 
occurred in the region, including the magnitude 6.9, 23th November 1980, event. The seismic network is 
composed of 29, 6-components stations equipped with both accelerometers and velocimeters (and with real-time 
telemetry) organized in six sub-nets, each of them composed of a maximum of 6-7 stations. The stations of each 
sub-net are connected in real-time to a central data-collector named Local Control Center (LCC). The different 
LCCs are linked among them and to a Network Control Center (NCC), located at RISSC 
(http://www.rissclab.unina.it), 100km away from the network center. The ISNet is conceived as a system where 
the levels of computation, analysis and decision are distributed over the seismic network nodes. Each node of 
the network should be able to process and analyze in real-time the first P-wave signal, providing the measured 
quantities (arrival time, frequency, amplitude) to its closest LCC. As more stations will record the seismic signal, 
the new measurements may be sent to and processed by the LCC, which crosschecks the redundant information 
coming from different stations, and outputs a progressively refined estimate of earthquake location and 
magnitude (Weber et al., 2007). Alternatively, the NCC may process the information and provide estimates on 
the earthquake’s characteristics. 
The EEWS under development in Campania using ISNet has been designed to be a hybrid application of 
regional and on-site early warning approaches (Kanamori, 2005). In fact, there is a potential for a regional 
seismic infrastructure to operate as an EEWS and to protect several critical targets at the same time. Such 
EEWS’s may prove to be a moderately costly solution for the reduction of the expected earthquake losses in 
large regions. The exploitation of regional seismic networks for the protection of multiple critical systems 
depends: (i) on the possibility of real-time estimation of the size of the event (source parameters) or (most 
importantly) the intensity of subsequent ground shaking at various sites and; (ii) on the ability to design 
engineering applications for real-time seismic risk mitigation. Among the information needed to design 
earthquake early warning applications, there is the estimation of the available time to perform security actions 
before the arrival of the more energetic seismic phase at the site of interest, this interval is termed lead-time. 
Herein, the available lead-time is computed for the Campania region in a probabilistic manner. 
Because, in the developed approach to EEW (summarized in the following), the information on the ground 
motion evolves as the number of seismic stations triggered by the event increases, there is a trade-off between 
the available time and the level of information for the estimation of the earthquake potential. Therefore, the 
study presented investigates on the required number of triggered stations to stabilize the real-time prediction of 
peak ground shaking and how it is affected by different sources of uncertainty. Finally, different lead-time maps 
are computed as a function of the level of information available (i.e., the number of stations triggered) and 
selected results are analyzed in respect to potentially operable security actions. 
 
 
2. REAL-TIME RISK ANALYSIS FOR EARTHQUAKE EARLY WARNING  
 
Seismologists have recently developed several methods to estimate the event’s magnitude (M) on the basis of 
limited information of the P-waves (in the first few seconds of the recorded ground motion) for real-time 
applications. Similarly, the source-to-site distance, R, may be predicted analyzing the order in which the seismic 
stations detect the developing earthquake. Therefore, it is possible to assume that at a given instant estimates of 
M and R are available, and the prediction of ground motion at the site can be performed as the probabilistic 
seismic hazard analysis (PSHA) conditional to the real-time information given by the seismic sensors network 
(Iervolino et al., 2006). In fact, let’s assume that a given time t from the earthquake’s origin, the seismic 
network can provide estimates (in terms of probability density functions or PDFs) of M and R. The PDF of M is 
intrinsically conditioned to a vector of measures of the seismic instruments useful to predict the magnitude, say 
{ }2, , ,1 n  τ τ τ… , where n is the number of instruments at which data are available. The PDF of M has to be 
indicated as ( )

2, ,..., 2, ,...,
1 nM| 1 nf m|τ τ τ τ τ τ . Similarly, the PDF of R, which according to the considered localization 

method (Satriano et al., 2008) only depends on the sequence of stations triggered, will be referred to as 
( )

2, ,..., ,...,
1 nR|s s s 1 2 nf r|s ,s s , where { }2, , ,1 ns  s  s…  is such sequence. Thus, it is possible to compute the 
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probabilistic distribution (or hazard curve) of a ground motion intensity measure (IM) at the site (i.e., the peak 
ground acceleration or PGA) as in Eqn. 1.1. This also requires an attenuation relationship, ( )| ,IM M Rf im|m,r , 
available for the chosen IM. The subscript n in the left-hand side of Eqn. 1.1 means that the computed hazard 
curve refers to a particular set of triggered stations (at time in which the integral is computed) and, therefore, 
evolves with time until all stations have measured the data of interest. 
 
 ( ) ( ) ( ) ( )

2 2, | , , ,..., 2 , ,...,, ,..., ,...,
1 n 1 nIM n IM M R M| 1 n R|s s s 1 2 n

m r

f im f im|m,r  f m|  f r|s ,s s  dr dmτ τ τ τ τ τ= ∫ ∫  (1.1) 

 
The real-time hazard integral requires the distribution of magnitude estimated on the basis of data provided by 
the network at given time. For example, Allen and Kanamori (2003) developed a relationship between the 
magnitude of the event and the predominant period, τ, of the first four seconds of the velocity recording of the 
P-waves. Zollo et al. (2006) show that the low-pass filtered, peak amplitudes of initial P- and S-wave seismic 
signals recorded close to an occurring earthquake source correlate with the magnitude.  
It has been shown (Iervolino et. al, 2006; Iervolino et al., 2007) that if the distribution of any of this parameter is 
available conditional to magnitude, ( )||Mf mτ τ , then evolutionary ( )

2, ,..., 2, ,...,
1 nM| 1 nf m|τ τ τ τ τ τ  may be easily 

computed in a Bayesian updating approach in which the prior distribution is given by the Gutenberg-Richter 
relationship for the source. On the other hand, also ( )

2, ,..., ,...,
1 nR|s s s 1 2 nf r|s ,s s  may be available because of rapid 

earthquake localization procedures. One of the most recent is that based on the Equal Differential-Time (EDT) 
formulation (Satriano et al., 2008). The algorithm defines a dense (1km spaced) grid of points, each of those 
identified by a set of coordinates in the space below the network. During an earthquake the algorithm allows to 
assign to each point a probability that hypocenter is coincident with that point. Consequently, the estimate of the 
epicentral distance may be retrieved by a geometrical transformation assigning, to any particular distance value, 
a probability which is the sum of the probabilities of all points of the grid with the same distance to the site. 
  
 
2.1. A virtual simulator as a tool for testing the performance of the ISNet Early Warning Infrastructure 
 
To analyze the performances of the ISNet early warning infrastructure in the case of moderate-to-large 
magnitude earthquakes a MATLAB-SIMULINK® simulator was developed. It allows to represent the behavior 
of the ISNet-EEWS without recorded signals, although this implies some intrinsic limitations. The flow chart of 
the simulator may be represented by three main bocks: acquisition, computation, and alarm issuance decision.  
Acquisition. Simulation starts with the assignment of the geophysical features the EEWS will try to estimate 
(true values of magnitude and location). Once the event is defined (by M and source-to-site distance R), the 
measurements of τ for the triggered stations are needed to perform the real-time risk analysis. It is possible to 
simulate the station measurements by sampling the empirical distribution of τ conditional on the true magnitude 
of the event. In the simulation process, at any given time t, the number and sequence of stations triggered is 
computed assuming an appropriate velocity model for the region (to follow). A measurement of a station is 
considered in the process if 4s have passed from its trigger. Then, the measurement vector { }2, , ,1 n  τ τ τ…  is 
broadcasted from the acquisition block to the computation block. 
Computation. This block collects data, and starts to furnish an evolving estimation of the hypocenter (i.e., the 
distance of the source from a site of interest) and the magnitude of the earthquake with the associated PDFs. The 
magnitude is estimated using the empirical relationship with τ measured in the first 4s of the record in a 
Bayesian approach. The location algorithm, RTLoc (Satriano et al., 2008) covers the area of interest with 
Voronoi cells and back-propagates the travel-times given the velocity model: the epicenter location is generally 
stable when 3 or 4 stations have triggered the event. At each time step, the PDFs of R and M are updated 
integrating the new information.  
Decision. Whether to issue or not an alarm, during a running earthquake, depends on a decisional rule. Such a 
rule is based on the probability of exceeding a given threshold (IMc) for a certain ground motion IM. Starting 
from the R and M PDFs, the IM distribution at the target site is computed through the hazard integral. Assuming 
that the predicted IM is the PGA, the alarm is issued if the condition of Eqn. 2.1 occurs. In other words, the 
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alarm is issued when the risk that the critical peak ground motion value is exceeded, is larger than a probability 
threshold Pc. 
 
 [ ]c cP PGA PGA P> >  (2.1) 

 
2.1.1. Numerical tests and uncertainty analysis 
 
As an example, results of simulation for an M 6 event located within the network are given. The target sites, 
used for the simulation, are Naples and S. Angelo dei Lombardi (Avellino), a town destroyed by 1980 Irpinia 
earthquake. The epicenter of the simulated event is 124km far from Naples and 60km far from S. Angelo dei 
Lombardi (Figure 1, left). The probabilistic estimations of the magnitude Figure 1 (right) and source-to-site 
distance (epicentral) are given in Figure 2 in terms of PDFs. In Figure 3 the real-time hazard is given in terms of 
PGA for the considered sites (the used attenuation relationship is from Sabetta and Pugliese, 1996). Curves in 
Figures 1-3, correspond different numbers of triggered stations during the developing seismic event, i.e., are 
function of time. Note that the hazard increases as time flows (more τ measures are available because more 
stations are triggered), consistently with the magnitude estimation method, which tends to underestimate M, 
especially at the beginning of the event (Iervolino et al., 2006). 

 

_______ t = 7s, n = 2; _______ t = 8s, n = 5; _______ t = 9s, n = 9; _______ t = 10s, n = 11;

_______ t = 11s, n = 14; _______ t = 12s, n = 16; _______ t = 13s, n = 18; _______ t = 14s, n = 20;

_______ t = 15s, n = 24; _______ t = 16s, n = 26; _______ t = 17s, n = 28; _______ t = 18s, n = 29.

 
Figure 1. Location of the event and sites (left); PDFs of M as the number of triggered stations increases (right). 

 

_______ t = 7s, n = 2; _______ t = 8s, n = 5; _______ t = 9s, n = 9; _______ t = 10s, n = 11;

_______ t = 11s, n = 14; _______ t = 12s, n = 16; _______ t = 13s, n = 18; _______ t = 14s, n = 20;

_______ t = 15s, n = 24; _______ t = 16s, n = 26; _______ t = 17s, n = 28; _______ t = 18s, n = 29.

 
Figure 2. PDFs of R as the number of triggered stations increases for S. Ang. dei Lomb. (left) and Naples (right). 
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_______ t = 7s, n = 2; _______ t = 8s, n = 5; _______ t = 9s, n = 9; _______ t = 10s, n = 11;

_______ t = 11s, n = 14; _______ t = 12s, n = 16; _______ t = 13s, n = 18; _______ t = 14s, n = 20;

_______ t = 15s, n = 24; _______ t = 16s, n = 26; _______ t = 17s, n = 28; _______ t = 18s, n = 29.

 
Figure 3. PDFs of PGA as the number of triggered stations increases for S. Ang. dei Lomb. (left) and Naples 

(right). 
 
In Figure 4 the exceedance probabilities are given for different possible values of the critical PGAc of the 
decisional rule of Eqn. 2.1. The plots in the figure refer to 100 simulations of the same event discussed above, 
which means that the τ measures have been simulated 100 times for the same M 6 earthquake. It appears that the 
exceedance probability of the critical PGA does not change after 10s-13s, which corresponds, on average, to 
11-18 stations measuring τ. 
In Figure 5, the coefficient of variation (CoV, the ratio of the standard deviation to the mean) of the PGA is 
given for different conditions, as the number of triggered stations increases. In particular, the CoV of the PGA is 
computed, via the integral of Eqn. 1.1, in the following cases: (i) considering both PDFs of M and R; (ii) 
considering only the mode of R without its full PDF; and (iii) considering only the mode of R and the mean of 
M (Convertito et al., 2008). This allows to assess the effects of uncertainty in estimation of M and R on the 
distribution of the PGA. 
It appears from the results that uncertainty on distance is negligible in respect to the prediction of PGA (CoV of 
PGA does not vary significantly considering or not uncertainty on distance); also uncertainty on magnitude, 
although larger than distance, is small if compared to that of the attenuation law, at least when several measures 
of τ are available. 
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Figure 4. Estimation of exceedance probability for some PGA values as the number of triggered stations 
increases, for S. Ang. dei Lomb. (left) and Napoli (right), for 100 simulated events. 
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Figure 5. CoV of PGA computed considering the full PDFs of M and R or their point estimates, for S. Ang. dei 

Lomb. (left) and Napoli (right), for 100 simulated events. 
 
 
3. INFORMATION-DEPENDENT LEAD-TIME 
 
EEW is based on the difference in speed between mechanic and radio signals and on the fact that the most of the 
seismic energy is brought by S-waves, while information on the earthquake size and location can be taken from 
P-waves which are faster. Thus, if computing is fast enough, it is possible to use part of the time before S-wave 
arrival at the site of interest to perform rapid evaluation of earthquake parameters, the remaining time is to issue 
the alarm and undertake security actions; it is termed lead-time. 
It has been shown that, in the adopted approach, the estimation of critical ground motion becomes stable only 
after a number of stations have recorded the early signal of the event, therefore, there is a trade-off between the 
lead-time and the level of information for the alarm issuance. In fact, different definitions of lead-time are 
considered in the following, each of those correspond to a different number of stations triggered (i.e., a different 
level of information on magnitude and location of the event). For each of these proposed definitions, the 
minimum, maximum and average lead-times associated to each point (j) in Campania, have been computed 
using an appropriate regional 1D velocity model. According to this model P and S velocities, vP and vS 
respectively, are function of hypocentral depth and have a constant of 1.68 ratio (Satriano et al., 2008). In this 
framework the lead-time, j

kT , for each point may be computed as: 
 
 ( ) ( )j j k

k S PT T h T h t= − − ∆  (3.1) 
 
where, ( )j

ST h  is the S-wave arrival time at observation point (j) and depends on the source depth h; ( )k
PT h  

represent the time to trigger the first k stations and also depends on the source depth h because of the velocity 
model; t∆  is the required processing time (assumed equal to 5 seconds and includes the required P-wave data 
recording at each station). ( )j

ST h  and ( )k
PT h  can be approximated using travel-time curves as a function of 

distance from the seismic source and h (A. Zollo, personal communication, 2008). 
Lead-time has been computed for k = 4, k = 18 and k = 29 considering as possible epicenters those occurring in 
the rectangular area which includes the ISNet sensors (to account for events occurring within the network), 
while the hypocentral depth may be up to 12km. Within this bounds the hypocentral location has been extracted 
randomly. Given the geometry of the ISNet infrastructure and the velocity model above, the elapsed time for 1 
station to detect the P-wave arrival is on average 1.5s and ranges from 1s to 4s for all events of the type 
considered; for 18 stations is, on average, 7.5s ranging from 5s to 11s; finally, the average time to trigger all 29 
ISNet stations is 12s ranging from 8s to 16s. Results in form of maps are given in Figure 6, where minimum, 
average, and maximum lead-time are given for each node of a regular grid having about 2km spacing and 
covering the Campanian territory with over 2700 nodes. In the figure the “blind zones”, areas in which no 
warning time is available, are also given. Maps can be analyzed in respect to a list of real-time risk reduction 
actions and the time they require (Goltz, 2002); an example is given in Figure 7. 
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� ISNet stations �Blind zone � ]0s, 5s] � ]5s, 10s] � ]10s, 15s]

� ]15s, 20s] � ]20s, 25s] � ]25s, 30s] � ]30s, 35s] � ]35s, 40s] � > 40s

 
Figure 6. Lead-time maps for different numbers of stations triggered. 

 
�Semi-active structural control (~ 1 sec).

�Turning all the traffic lights on the freeway to red to alert drivers and

stop traffic (~ 5 sec).

�At home, moving away from large appliances or

pieces of furniture that could fall over and taking

cover under a table or other object that provides

similar protection (~ 5 – 10 sec).

�Outdoors, looking out for collapsing objects (signs,

broken glass, cornice, …) and taking shelter in a

sturdy building if there is one close enough (~ 5 –

10 sec).

�Stopping hazardous work (in building yards, …) to

secure safety (~ 5 – 10 sec).

�Moving away from hazardous chemical systems

and machinery to secure safety (~ 5 – 10 sec).

�In public buildings, do not panic and do not rush for

the exit or stairs, following the attendant’s

instructions (~ 10 sec).

�Stopping elevators at the nearest floor and opening

its doors immediately to prevent people from being

trapped (~ 5 – 10 sec).

�Activating backup and turning off important

computers (~ 5 sec – 10 sec).

�Slowing down trains (and stopping them if necessary/possible) to prevent

railway accidents (a few tents of seconds dependent on train speed).

�Preventing planes from landing (a few tents of seconds).

�Controlling production lines to mitigate damage (~ 15 sec).

�Shutdown of critical systems (sensitive bio-medical equipments in

hospitals, reactors and other hazardous equipments in energy and

chemical plants) and lifelines/pipelines (~ 20 sec).

�Suspending work in progress in

operating rooms to avoid mistakes (~

20 – 30 sec).

�INDIVIDUAL ACTIONS (personal protection)

�AUTOMATIC ACTIONS (Automatic Control and Systems Engineering, Structural Engineering, …)

 
Figure 7. Average lead-time with the information of 18 stations and security actions, adapted from Goltz (2002). 
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4. CONCLUSIONS 
 
The study presented investigated the trade-off between the information on the incoming earthquake and 
available lead-time for earthquake early warning purposes. The study was carried out for the Campania 
(southern Italy) which is provided with a regional seismic network, ISNet, with real-time features. 
Results of the uncertainty analyses suggest that: (1) the larger uncertainty in the prediction of peak ground 
motion at the site is that of the attenuation relationship; and (2) that, according to the magnitude estimation 
approach considered, several stations have to record the early seconds of the P-waves to stabilize the estimated 
risk of exceeding a critical PGA value. 
Information-dependent lead-time maps confirm that evacuation of buildings is hardly possible in the region. 
However, the estimated warning times seem to be sufficient to activate several types of security measures in 
selected structures/infrastructures. In fact, EEWS could provide warning to at least some of the affected 
population in a damaging earthquake. These maps, which also provide the size of the blind zone, can be also 
used as a guide to select strategic locations for future network development. 
 
 
AKNOWLEDGEMENTS 
 
This work was financially supported by AMRA scarl (http://www.amra.unina.it) in the frame of the SAFER 
project (sixth framework program sustainable development, global change and ecosystem priority 6.3.IV.2.1: 
reduction of seismic risks contract for specific targeted research or innovation project contract no. 036935) and 
in collaboration with Dipartimento della Protezione Civile in the frame of the ReLUIS project 2005-2008. Prof. 
Aldo Zollo and Dr. Claudio Satriano are also acknowledged for the velocity and location data provided. 
 
 
REFERENCES  
 
Allen, R.M., and Kanamori, H. (2003). The Potential for Earthquake Early Warning in Southern California, 
Science, 300 786–789. 
Convertito, V., Iervolino, I., Giorgio, M., Manfredi, G., and Zollo, A. (2008) Prediction of response spectra via 
real-time earthquake measurements, Soil Dynamics and Earthquake Engineering, 28, 492–505. 
Goltz, J.D. (2002). Introducing Earthquake Early Warning in California: A Summary of Social Science and 
Public Policy Issues, A Report to OES and the Operational Areas, California Governor’s office for Emergency 
Services. [http://www.cisn.org/docs/Goltz.TaskI-IV.Report.doc] 
Kanamori, H. (2005). Real-time seismology and earthquake damage mitigation, Annual Review of Earth and 
Planetary Science, 33, 195–214. 
Iervolino, I., Convertito, V., Giorgio, M., Manfredi, G., and Zollo, A. (2006) Real-time risk analysis for hybrid 
earthquake early warning systems, Journal of Earthquake Engineering, 10, 867–885. 
Iervolino, I., Giorgio, M., and Manfredi, G. (2007). Expected loss-based alarm threshold set for earthquake early 
warning systems, Earthquake Engineering and Structural Dynamics, 36, 1151–1168. 
Satriano, C., Lomax, A., and Zollo, A. (2008). Real-Time Evolutionary Earthquake Location for Seismic Early 
Warning, Bulletin of the Seismological Society of America, 98, 1482–1494. 
Sabetta, F., and Pugliese, A. (1996). Estimation of response spectra and simulation of nonstationarity 
earthquake ground motion, Bulletin of the Seismological Society of America, 86, 337–352. 
Weber, E., Convertito, V., Iannaccone, G., Zollo, A., Bobbio, A., Cantore, L., Corciulo, M., Di Crosta, M., Elia, 
L., Martino, C., Romeo, A., and Satriano, C. (2007). An Advanced Seismic Network in the Southern Apennines 
(Italy) for Seismicity Investigations and Experimentation with Earthquake Early Warning, Seismological 
Research Letters, 78, 622–634. 
Zollo, A., Lancieri, M., and Nielsen, S. (2006). Earthquake magnitude estimation from peak amplitudes of very 
early seismic signals on strong motion records, Geophysical Research Letters, 33, L23312. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


