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ABSTRACT : 

This paper presents a new response control method for building structures against earthquakes by making use of
the inertia element connected between mass points. The device is named as the dynamic mass which generates 
the force to be proportional to the acceleration difference between mass points. In this paper, two topics are 
introduced. One of them is the method which the natural period of structure can be elongated keeping its mode 
shapes. Next topic is the method that can be made all participation factors of higher modes into 0 except the 1st 
mode. It is very simple to make the suitable distribution of dynamic masses along height which is satisfied to 
the above situation. As a result, response shear coefficients of all stories become same, because the response for
higher modes does not occur. 
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1. INTRODUCTION  
 
In general, seismic designs of buildings are performed by adjusting the stiffness and the strength and, in recent 
years, by artificially giving the damping. The response control by making use of these terms means to design the 
stiffness factor and the damping factor in the equation of motion. On the other hand, there are studies to control 
the response by making supplementary masses behave according to the displacement difference between mass 
points 1]-3]. These response control methods using the supplementary masses induce characteristic changes of the 
vibration system like a decrease effect for ground motion input etc., which can not be obtained by only 
controlling the stiffness and damping.  
Rightly, the damping element and the stiffness element each generate the forces to be proportional to the 
velocity difference and the displacement difference between mass points. After the above expression, the 
authors newly define "the dynamic mass" that generates the force to be proportional to the acceleration 
difference between mass points. The high performance "dynamic mass" to be much greater than its actual mass 
can be realized by using the displacement amplification mechanism such as the rotation mechanism etc. Thus, 
we can gain a quite new response control method. That is, the three main factors of mass, damping and stiffness 
in the equation of motion can be adjusted in order to satisfy the engineer’s target design performance.  
This paper introduces two topics. One is the method which the natural period of structure can be elongated 
keeping its mode shapes. Next is the method that can be made all participation factors of higher modes 0 except 
the 1st mode. 
 
 
2. DYNAMIC MSSS 
 
Fig.1 shows the concept of the dynamic mass which is composed of the rotation body with combined the inner 
wheel and the outer wheel. And mass m is concentrated at the outer wheel. Now, we define the amplification 
ratio β which is the ratio of the radius of the outer wheel to the inner wheel. When the inner wheel is pushed in 
the direction of the tangent with the acceleration α, the inertia force of the mass m of the outer wheel is mβα. 
And the reaction force to push the inner wheel becomes β 2mα. As a result, the mass m of the outer wheel can 
display the magnitude of β 2m at the position of inner wheel which means the formation of mass amplification 
device. If β  is large enough, this mechanism can be assumed as the dynamic mass that generates the force to be 
proportional to the acceleration difference between mass points. Now, we express the magnitude of dynamic 
mass as m' (=β 2m) in distinction from the real mass m of the structure. 
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         Figure 1  Rotation Body                      Figure 2  Rotary Damping Tube (RDT) 
 
The practical device of dynamic mass is composed by a little improvement for a viscous damping device called 
"Rotary Damping Tube" (RDT) which converts an axial movement into the gyration of the inner cylinder with a 
ball screw, and generates the resistance force from the viscous body filled between the rotating inner cylinder 
and the fixed cover cylinder. The displacement of the direction of the tangent of the inner cylinder is amplified 
to about 5 to 40 time of axial displacement. The effect of the inertia mass of the rotating inner cylinder is 
amplified to the square of the displacement amplification ratio. It becomes 1,000 times or more the mass of the 
inner cylinder. The dynamic mass device with 1,000 ton has been made for trial purposes, and an experiment 
was executed successfully 4]. 
 
 
3. SINGLE DEGREE OF FREEDOM SYSTEM WITH DYNAMIC MASS 
 
Consider the single degree of freedom vibration system that the above-mentioned rotation body is built into 
shown in Figure 3(a), or the single degree of freedom vibration system that has the dynamic mass shown in 
Figure 3(b). The equation of motion is given by Eqns.3.1, 3.2 and 3.3 below: 
 
 
 
 
 
 
 
 
Figure 3(a)  Single Degree of Freedom Vibration      Figure 3(b)  Single Degree of Freedom Vibration 
           System with Rotation Body                         System with Dynamic Mass 
                                                     (Hereafter, dynamic mass is shown by     .) 
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From Eqn.3.3, it is understood that dynamic mass induces the following characteristic changes to systems. 
(1) Elongation of the natural period,  
(2) Decrease of damping effect  
(3) Decrease effect for acceleration of ground motion. 
Considering Eqn.3.1, in case of k=0 and c=0, the absolute acceleration A becomes Eqn.3.4 that is not 0. This 
means that the ground motion acceleration is transmitted through the dynamic mass. As a result, it appears 
another vibration mode that represents "acceleration transmitted directly through the dynamic mass". However, 
this effect doesn't become visible at the left side of Eqn.3.1. 
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In order to clearly specify the effect of dynamic mass, the equation of motion for two-mass system, in which a 
dummy mass may be added to one-mass system as shown in Figure 4, is given by Eqn.3.5 as follows: 
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in which,  m0 is dummy mass, mm <<0 , k0 is dummy spring constant, kk >>0 , x0 is displacement of dummy 
mass from the ground, 10 <<x . 
 
 
 
 
 
 
 

Figure 4  Addition of Dummy Mass 
 
Considering the eigenvalue problem of the left side of Eqn.3.5 under the condition with disregard of the viscous 
damping term, the eigenvalues 2ω , the eigenvectors { }u  , the participation factors β  and the participation 
vectors { }uβ  are the following. 
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Now, the symbol η  is defined as the decrease effect of input. The 1st mode is "the mode of the response to the 
decreased input" and the 2nd mode is "the mode of the acceleration that acts directly through dynamic mass". 
 
 
4. TWO DEGREE OF FREEDOM SYSTEM WITH DYNAMIC MASS 
 
 
 
 
 
 
 
 
 
 

Figure 5  2-Mass System with Dynamic Mass 
 
The equation of motion for two-mass system with the dynamic mass shown in Figure 5 is expressed as 
two-mass system of Eqn.4.1 and as three-mass system with a dummy mass of Eqn.4.2. In the expression of 
two-mass system Eqn.4.1, an input index vector at the right side of the equation becomes { }η . Each element of 
{ }η  is a value of 1 or less. The 1st mode and the 2nd mode are the modes of the response to the decreased 
input. In the other expression of three-mass system Eqn.4.2, the vector is { }1 , and it has the 3rd mode of the 
rigid body which directly transmits the acceleration of ground motion in the ratio of the mode shape through the 
dynamic mass devices.  
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5. RESPONSE CONTROL OF TWO DEGREE OF FREEDOM SYSTEM WITH DYNAMIC MASS 
 
There are some effective uses of the dynamic mass for the response control of the structure against earthquakes. 
 
5.1. Response Control Changing Eigenvalues without Changing Eigenvectors 
 
The natural period can be elongated without changing eigenvectors by adding the dynamic mass proportional to 
the stiffness of each story of the vibration system. Assuming the following eigenvalue problem from Eqn.4.1, 
add [ ]{ }uK ss ˆˆ2ωα ⋅  to the both sides of the equation. 
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When the dynamic mass [ ] [ ]KM ˆ'ˆ α=  is added to the system, the eigenvalues change from 2ωs  to 2'ωs  
without changing eigenvectors. 
 
5.2. Response Control Adjusting Participation Factor of 2nd Mode to 0 
 
The participation factor of the 2nd mode can be adjusted to 0 by operating eigenvectors by adding the dynamic 
mass. If the 1st eigenvector of Eqn.4.1 is { }η , the 2nd participation factor shown by Eqn.5.2 becomes 0 
because of the orthogonality between the eigenvectors. And the response of the 2nd mode disappears.  
                       { } [ ]{ }

{ } [ ]{ }
0

ˆˆˆ

ˆˆ

22

2
2 ==

uMu

Mu
T

T η
β  (5.2) 

 
The required conditions to keep this situation can be solved as shown below. 
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in which, the value of 2'm  is arbitrary, including 0. 
 
In this condition, the eigenvector of the 1st mode is { }η  , and the participation factor of the 2nd mode is 0. The 
eigenvalue problem of the 1st mode is given by Eqn.5.4. 
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That is, when the 2nd participation factor is 0 by adding the proper combination of the dynamic mass, the 1st 
eigenvalue is Eq.5.5. And from Eq.5.6, response shear coefficients of 1st and 2nd stories are the same value. 
 
 
6. MULTI DEGREE OF FREEDOM SYSTEM WITH DYNAMIC MASS 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6  n-Mass System with Dynamic Mass 
 
The equation of motion of n-mass system with dynamic mass shown in Figure 6 is given by Eqn.6.1. The 
difference between Eqn.6.1 and a conventional equation of motion, the vector of the right side is not { }1  but 
{ }η . Each element of { }η  is a value of 1 or less. This indicates the decrease effect of the input. 
 
                      [ ]{ } [ ]{ } [ ]{ } [ ]{ }yMxKxCxM &&&&& ηˆˆˆˆˆˆˆ −=++  (6.1) 

in which,               [ ] [ ] [ ]'ˆˆˆ
0 MMM += , { } [ ] [ ]{ }1ˆˆ

0

1
MM

−
=η  

                      [ ]0M̂  is ordinary mass matrix, [ ]=0M̂

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

1

2

3

2

1

00
0

0
00

m
m

m

m
m

m

n

n

n

LL

M

M

O

M

M

LL

 

x 

y 

mn

kn
m'n  cn 

m1

k1

m'1 c1 

mi

ki 
m'i ci 

xn 

xi 

x1 



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 

                      [ ]'M̂  is dynamic mass matrix, [ ]='M̂

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−
−+−

−+

+−
−+−

−

−−−

−−

122

2233

334

211

11

'''00
''''

0'''

'''0
''''

00''

mmm
mmmm

mmm

mmm
mmmm

mm

nnn

nnnn

nn

LL

M

O

MOOOM

O

M

LL

 

                      

[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−
−+−

−+

+−
−+−

−

=
−−−

−−

122

2233

334

211

11

00

0

0

00

ˆ

ccc
cccc

ccc

ccc
cccc

cc

C
nnn

nnnn

nn

LL

M

O

MOOOM

O

M

LL

  

[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−
−+−

−+

+−
−+−

−

=
−−−

−−

122

2233

334

211

11

00

0

0

00

ˆ

kkk
kkkk

kkk

kkk
kkkk

kk

K
nnn

nnnn

nn

LL

M

O

MOOOM

O

M

LL

 

 
The equation of motion of n-mass system with the dynamic mass is also expressed as (n+1)-mass system with a 
dummy mass. In this expression of (n+1)-mass system, the vector of the right side is { }1 , and it has the (n+1)th 
mode of the rigid body. 
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                  [ ]0M  is ordinary mass matrix, [ ]'M  is dynamic mass matrix. 
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7. RESPONSE CONTROL OF MULTI DEGREE OF FREEDOM SYSTEM WITH DYNAMIC MASS 
 
As well as the case of two-mass system, there are some effective uses of the dynamic mass for the response 
control of the structure to earthquakes.  
 
7.1. Response Control Changing Eigenvalues without Changing Eigenvectors  
 
The natural period can be elongated without changing eigenvectors by adding the dynamic mass proportional to 
the stiffness of each level of the vibration system. The proof is same as the previous case. 
 
7.2. Response Control Adjusting Participation Factors except the 1st Mode to 0 
 
The participation factors of from 2nd to n-th mode can be adjusted to 0 by operating eigenvectors by adding a 
certain combination of the dynamic mass. The combination of the dynamic mass can be evaluated easily by the 
following procedure. The detailed procedures can be found in the references 5]-7]. 
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7.3. Example of Response Control with Dynamic Mass 
 
Table 1 shows the process and the result of obtaining the combination of the dynamic mass that adjusts the 
participation factor of all higher modes of the example vibration system to 0. 
Table 2 shows the result of the eigenvalue analysis of the vibration system with the dynamic mass. The 
participation factors of 2nd to 8th mode are 0. The 9th mode of rigid body (i.e., ∞=ω  ) appears, and it has the 
physical meaning of transmit of the acceleration related to the ground motion. 
Figure 7 shows comparisons of time history response analysis results of the original system and the controlled 
system. The input earthquake motion is El Centro 1940 NS (Amax=510.8 cm/s2). The damping is assigned h=0.05 
for the first mode in proportion to the stiffness of the original system. By adding the dynamic mass, the first 
period is elongated from T=1.00 [sec] to T=1.11 [sec]. The damping factor of the 1st mode has decreased from 
h=0.05 to h=0.045. As a result of mode control, the response of the higher mode disappears. Response 
accelerations decrease. Response shear coefficients of all stories are the same. It shows the unique and effective 
response control. 
 

Table 1  Evaluation of Dynamic Mass 
 1ω  5.6381 1T＝ 1.1144     

 1ω
2 31.788       

i mi 

(ton) 

ki 

(kN/m) 

Σmi 

(ton) 

Σ(1/ki

Σmi) 
1ui 

=ηi 

n+1ui 
=1-ηi

 

Di 
m'i 
(ton) 

8 750.0 820,000 750.0 0.00091 1.0000 0.0000 0.0000 0 

7 760.0 830,000 1,510.0 0.00273 0.9709 0.0291 0.3346  382.09

6 770.0 840,000 2,280.0 0.00545 0.9131 0.0869 0.5018 1,031.66

5 780.0 870,000 3,060.0 0.00897 0.8268 0.1732 0.6077 2,004.36

4 790.0 890,000 3,850.0 0.01329 0.7150 0.2850 0.6745 3,267.00

3 800.0 900,000 4,650.0 0.01846 0.5775 0.4225 0.7201 4,793.33

2 850.0 910,000 5,500.0 0.02450 0.4133 0.5867 0.7533 6,693.43

1 900.0 920,000 6,400.0 0.03146 0.2211 0.7789 0.7789 8,985.31

0 － － － － 0.0000 1.0000 － － 

 
 
Table 2  Eigenvalue Analysis of Controlled System 

 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 

T 

ω 
1.114 

5.638 

0.621 

10.12 

0.539 

11.66 

0.459 

13.70 

0.381 

16.51 

0.302 

20.83 

0.220 

28.53 

0.135

46.61

0 

∞ 

β 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

u8 1.000 -0.663 -0.663 -0.669 -0.693 -0.733 -0.816 1.000 0.000

u7 0.971 -0.601 -0.580 -0.554 -0.521 -0.442 -0.208 -0.987 0.029

u6 0.913 -0.477 -0.416 -0.325 -0.177 0.137 1.000 0.000 0.087

u5 0.827 -0.293 -0.172 0.015 0.336 1.000 0.000 0.000 0.173

u4 0.715 -0.054 0.145 0.457 1.000 0.000 0.000 0.000 0.285

u3 0.578 0.239 0.535 1.000 0.000 0.000 0.000 0.000 0.423

u2 0.413 0.590 1.000 0.000 0.000 0.000 0.000 0.000 0.587

u1 0.221 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.779

u0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
 
                                                  Figure 7  Comparisons of Maximum Response 
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8. MODEL VIBRATION EXPERIMENT 
 
A 4-story model vibration experiment that confirms the effect of the mode control effect by the dynamic mass 
was executed. Figure 8 shows the outline of the vibration model. Participation factors of all higher modes are 
adjusted to 0 by adding the dynamic mass. As a result of the sine wave excitation experiment, the resonance of 
higher modes is lost and the response only of the 1st mode is remained. Figure 9 shows the comparison of the 
absolute acceleration amplification ratio of each mass point between the original system and the controlled 
system. The absolute acceleration amplification ratio of each mass point of the controlled system agrees with the 
calculated value very well. 
 
 
 
 

i mi(kg) ki(N/m) m'i(kg)

4 54.7 23,819 37.7 

3 54.7 23,819 50.3 

2 54.7 23,819 91.3 

1 54.7 23,819 151.1 

 
 
      Figure 8  Outline of Vibration Model        Figure 9  Amplification Ratio of Absolute Acceleration 
 
 
9. CONCLUSIONS 
 
The dynamic mass is defined as an element between mass points of vibration systems that generates the force to 
be proportional to the acceleration difference between mass points. Such an element can be put to practical use 
with an inertia mass amplification device that uses a displacement amplification mechanism. 
Dynamic mass is useful to control response of structures. The characteristic changes are induced to the vibration 
system, such as the elongation of the natural period, the damping decrease, and the input decrease. 
By adjusting the value of the dynamic mass of the each story, the natural period can be changed without 
changing the eigenvector of the multi degree vibration system and the participation factor of a higher mode can 
be adjusted to 0. Especially, the combination of the dynamic mass can be evaluated easily, that makes all 
participation vectors of higher modes zero except the 1st mode. 
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