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ABSTRACT : 

Multi-layered steel-reinforced elastomeric bearings have widely been used for isolation of structures and 
machines from vibrations. In an attempt to develop light-weight and low-cost isolators, recent studies have 
proposed the use of fiber reinforcement in place of steel reinforcement. Although the “rigid” reinforcement 
assumption is a fairly reasonable assumption in the analysis of a steel-reinforced bearing, it is necessary to 
include the effect of reinforcement flexibility while studying the compressive or bending behavior of a 
fiber-reinforced bearing. The main objective of this paper is to study, in detail, the compressive and bending 
behavior of fiber-reinforced elastomeric bearings by using advanced analytical solutions recently derived by 
Pinarbasi and Mengi (2008). Free from two of the three fundamental assumptions commonly used in the 
“pressure” method, these closed-form solutions are valuable tools for a detailed study on behavior of 
fiber-reinforced bearings under uniform compression or/and pure bending. Analyses conducted on bearings with 
different geometrical and material properties show that the compressive/bending behavior of a fiber-reinforced 
bearing can be considerably different than that of its steel-reinforced counterpart. The effect of reinforcement 
flexibility is very similar to the effect of material compressibility. As expected, the effect of reinforcement 
flexibility highly depends on the geometrical and material properties of the bearing. Reinforcement flexibility is 
found to be most effective when the “shape” factor of the bearing is large and Poisson’s ratio of the layer 
material is close to 0.5. 

KEYWORDS: Seismic isolation, fiber-reinforced elastomeric bearing, rubber, compression, bending, 
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1. INTRODUCTION 
 
Multi-layered steel-reinforced elastomeric bearings have widely been used for isolation of machines, bridges 
and recently of structures from vibrations like earthquake excitations. In an attempt to develop light-weight, 
low-cost isolators to be used in developing countries and/or low-cost housing, recent studies (e.g., Kelly, 2002; 
Moon et al., 2002; Tsai, 2004) have proposed the replacement of steel reinforcement with fiber reinforcement.  
 
Although the “rigid” reinforcement assumption can realistically be used in the analysis of a steel-reinforced 
bearing, it is necessary to include the effect of reinforcement flexibility while investigating the compressive or 
bending behavior of a fiber-reinforced bearing. Recently, compressive/bending behavior of strip-shaped elastic 
layers bonded to flexible reinforcements has been analyzed using an approximate theory based on modified 
Galerkin method (Pinarbasi and Mengi, 2008). Since the approximate theory eliminates two of the three 
fundamental assumptions of the commonly-used pressure method, i.e., the “pressure” and the plane sections 
remain plane assumptions (refer to Kelly (1997) for details on the pressure method), the solutions derived using 
this theory are advanced in view of that they are valid not only for a strictly or nearly incompressible bearing 
with high shape factor (HSF), but even for a compressible bearing with low shape factor (LSF). It is to be noted 
that only remaining assumption in the derived expressions is the parabolic bulging assumption. This assumption 
has already been shown to be realistic unless the thickness of the individual elastomer layers in the bearing is 
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enormously large. Accordingly, these advanced solutions can be used as valuable tools for a detailed study on 
compressive/bending behavior of fiber-reinforced elastomeric bearings. 
 
The main objective of this paper is to study compressive and bending behavior of strip-shaped fiber-reinforced 
elastomeric bearings using the analytical solutions derived from the above-mentioned higher order theory. Main 
emphasis is given to the investigation of the influence of reinforcement flexibility on effective bearing moduli, 
i.e., effective compression and bending moduli, and on stress distributions in the bearing. Since the effect of 
reinforcement flexibility also depends on the geometrical and material properties of the bearing itself, the 
discussions inherently include a study on the effects of the other two basic parameters governing the bearing 
behavior; “shape factor” (ratio of one loaded area to bulge free areas for an interior rubber layer) of the bearing 
(S) and Poisson’s ratio of the elastomeric material (ν). 
 
 
2. CLOSED-FORM EXPRESSIONS FOR COMPRESSIVE AND BENDING BEHAVIOR OF FIBER- 

REINFORCED ELASTOMERIC BEARINGS 
 
It is well known that the compressive or bending behavior of a multi-layered elastomeric bearing is governed by 
the behavior of its individual elastomer layers. Figure 1a shows the undeformed configuration for such an 
elastomer layer in a multi-layered fiber-reinforced strip. The layer has uniform thickness t and is bonded to 
flexible reinforcing sheets with equivalent thickness tf at its top and bottom faces. Since the length of the layer is 
much larger than its width 2w and thickness t, the layer is in a state of plane strain and can be defined referring 
to a two-dimensional rectangular coordinate system (x1, x2) with its origin located at the center of the layer as 
shown in Figure 1a. When the layer is uniformly compressed, it deforms as shown in Figure 1b. On the other 
hand, under pure bending, the deformed shape takes the form shown in Figure 1c. 
 

   

  a. undeformed shape b. deformed shape under compression c. deformed shape under bending 

Figure 1 Undeformed and deformed configurations for a fiber-reinforced elastomeric layer under uniform 
compression and pure bending 

 
These compression and bending problems have recently been solved by Pinarbasi and Mengi (2008) using a 
higher order theory based on a modified version of Galerkin method (Mengi, 1980) and advanced closed-form 
solutions have been derived for displacement/stress distributions and effective layer moduli, i.e., compression 
and bending moduli. The following expressions for effective compression modulus Ec, effective bending 
modulus Eb and for displacement components u1 and u2 are directly taken from Pinarbasi and Mengi (2008): 
 

• Uniform compression: 
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• Pure bending: 
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It is to be noted that in Eqns. (2.1) to (2.7), α=2μ+λ where μ and λ are Lamé’s constants; kf is in-plane stiffness 
of the reinforcing sheets; Ef and νf are, respectively, elasticity modulus and Poisson’s ratio of the reinforcing 
sheets; Δ is the applied vertical displacement and φ is the relative rotation of the top face of the layer with 
respect to its bottom face. Stress distributions can easily be obtained using the displacement-stress relationships 
of linear elasticity. Due to their lengthy forms, they are not presented here. 
 
 
3. EFFECT OF REINFORCEMENT FLEXIBILITY ON COMPRESSIVE/BENDING BEHAVIOR OF 

ELASTOMERIC BEARINGS 
 
For a bonded elastic layer, there are two limiting cases as far as the flexibility of the reinforcing sheets to which 
the layer is bonded is concerned: the layer behavior approaches its “unbonded (no-reinforcement)” behavior 
when the “stiffness ratio” of the reinforcing sheets and the layer, i.e., k*

f = kf /(μt), tends to zero and approaches 
its “rigidly-reinforced (rigid-reinforcement)” behavior when this ratio tends to infinity. In this section, the effect 
of reinforcement flexibility on compressive/bending behavior of elastomeric bearings is investigated for 
bearings with different geometrical and material properties. 
 
The effects of reinforcement flexibility on compression modulus Ec and bending modulus Eb are shown 
respectively in Figure 2a and Figure 2b for various Poisson’s ratios and for two different shape factors; S=5, 30. 
It is to be noted that shape factor of a strip-shape layer with a thickness t and width 2w is simply equal to S=w/t. 
As shown in the figures, reinforcement flexibility affects both moduli in the same way. Bearings’ moduli 
increase with increasing k*

f until they reach their rigidly-reinforced values. The effect of k*
f  is much more 

pronounced when S is large and/or ν is close to 0.5. On the other hand, when ν is small, the bearings’ stiffnesses 
become almost insensitive to the changes in k*

f  even when k*
f  takes considerably large values. 
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a. effective compression modulus Ec 
  

b. effective bending modulus Eb 

Figure 2 Effect of reinforcement flexibility on effective moduli of an elastomeric bearing 

 
  

Figure 3 Effect of reinforcement flexibility on Ec /Eb ratio 
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Due to high resemblance of the graphs in Figure 2b to those in Figure 2a, one may think that the ratio of Eb to Ec 
is constant. In fact, a factor of five is quoted in the literature (Chalhoub and Kelly, 1991) for Ec/Eb ratio for 
steel-reinforced strip-shaped bearings. Figure 3 shows the variation of this ratio for bearings of various 
geometrical and material properties. It is clear that the value quoted in the literature has to be used with caution: 
Ec/Eb ratio equals to five only when the reinforcements can realistically be assumed to be rigid, shape factor of 
the bearing is considerably large and the layer material is strictly incompressible. As shown in Figure 3, 
reinforcement flexibility can decrease this ratio considerably. 
 
The graphs in Figure 4 show lateral normal stress (τ11) distributions in lateral direction under uniform 
compression for bearings with two different shape factors; S=1 and S=30, representing, respectively, LSF and 
HSF bearings. In the graphs, stress values are normalized with respect to the uniform pressure, i.e. Ecεc, where 
εc=Δ/t. Stress distributions for the HSF bearing is plotted for two different k*

f  values; 30000 and 30 (Figure 
4a,b). It is worth noting that the value of 30000 for k*

f , which can be considered as a typical value for a 
fiber-reinforced rubber bearing, is calculated using the typical values (Ef = 210 GPa, νf = 0.3, tf =0.27 mm, t=3 
mm, μ=0.7 MPa) quoted in literature (see, e.g., Kelly, 2002). Although similar graphs (with both k*

f =30000 and 
k*

f =30) have also been plotted for the LSF bearing, it has been seen that there is almost no difference between 
these two graphs, indicating that the behavior of the LSF bearing is insensitive to the reinforcement flexibility 
even when k*

f  is as low as 30. For this reason, only one graph is included in Figure 4 for the bearing with S=1. 
At this point, it is important to note that this surely does not mean that LSF bearings are not influenced from 
reinforcement flexibility. Since they reach their rigid-reinforcement behavior at much smaller values of k*

f  (see 
Figure 2), k*

f has to be considerably low for this type of bearings to start to “sense” the reinforcement flexibility.  
 
As shown in Figure 4a,b, the effect of reinforcement flexibility on lateral normal stress distributions in the HSF 
bearing is significant when the layer material is nearly incompressible. As k*

f decreases, maximum lateral 
normal stress which occurs at point (x1=0, x2=0) decreases significantly and parabolic stress distributions 
become much more uniform. Analyses show that k*

f  has the same effect on axial stress distributions in lateral 
direction. In fact, it can be seen that k*

f has exactly the same effect on stress distributions in an elastomeric 
bearing as ν has. From Figure 4a,b, it can also be seen that as reinforcement flexibility increases, the dramatic 
difference between the behavior of bearings with strictly incompressible and nearly incompressible materials 
decreases. The main reason for such a change in the behavior is the fact that a bearing with a smaller k*

f attains 
its “incompressible” modulus at a smaller value of ν (Pinarbasi and Mengi, 2008). 
 
Figure 5 presents similar graphs plotted for the pure bending case. In these graphs, stress values are normalized 
by SEbφ, which corresponds to the maximum bending stress developing in the corresponding unbonded layer as 
predicted by the simple beam theory. It is to be noted that the shape factor of the LSF bearing is selected in this 
case as 2.5. At this point, it is noteworthy that, the S values for the LSF bearings are selected to be equal to the 
most critical shape factor as far as the normalized shear stress is concerned. While this critical value is 1.0 for 
the uniform compression case, it is 2.5 for the pure bending case in strip-shaped bearings (see Figure 8). Figure 
5 clearly shows that the same conclusions derived for the compression case are valid also for the bending case: 
the effect of k*

f on stress distributions is exactly the same as that of ν. The shapes of the stress distributions 
under pure bending are surely different than those under uniform compression: the polynomial-like distribution 
of normal stresses tends to a linear distribution with a shift on the location of peak stress towards the edge as k*

f 
or ν decreases.  
 
From the graphs in Figure 6, which plot normal (τ11 and τ22) and shear (τ12) stress distributions in axial direction 
in a uniformly compressed bearing with S=1 and k*

f =30, one can see that, the “pressure assumption” is not valid 
for LSF layers bonded to flexible reinforcements: normal stresses are neither constant nor equal to each other 
through the layer thickness. In addition, shear stress distributions may also become highly nonlinear in vertical 
direction. Our studies show that a similar conclusion is valid for HSF layers if the reinforcement stiffness and/or 
Poisson’s ratio is low. While normal stresses in an HSF layer are constant through the layer thickness even when 
k*

f  =30 or ν=0.3, axial stress distributions start to deviate from lateral stress distributions as k*
f  or ν decreases. 

This can be seen from normal stress distributions plotted in Figure 7 for a purely bended bearing with S=30, 
which are identical in shape to the compression case. 
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a. S=30, kf /μt = 30000 b. S=30, kf /μt = 30 c. S=1, kf /μt = 30 

Figure 4 Lateral normal stress distributions in lateral direction under uniform compression 

 
 

   

a. S=30, kf /μt = 30000 b. S=30, kf /μt = 30 c. S=2.5, kf /μt = 30 

Figure 5 Lateral normal stress distributions in lateral direction under pure bending 

 
 

   

Figure 6 Normal and shear stress distributions in axial direction under uniform compression for S=1 and 
when kf /μt =30 
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a. kf /μt =30000 
   

b. kf /μt =30 

Figure 7 Effect of reinforcement flexibility on normal and shear stress distributions in axial direction under 
pure bending for S=30 

 
 

  

Figure 8 Maximum normalized shear stress in a reinforced elastomeric bearing with different geometrical and 
material properties 
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One of the most important design parameters for elastomeric bearings is the maximum shear strain that develops 
in the elastomer layers. In most engineering practices, multi-layered elastomeric bearings are designed for 
combined action of compression and/or bending and shear. It is now very well-known that due to the restraint of 
elastomer bulging by the reinforcing plates at the bonded faces, considerable amount of additional shear strain 
may develop in a multi-layered elastomeric bearing subjected to compression and/or bending. Thus, in order to 
compute the maximum shear strain in an elastomeric bearing, the shear strain developed due to compression 
and/or bending has to be added to the shear strain created directly by the applied shear forces. Our studies show 
that, under uniform compression or pure bending, maximum shear stress, so maximum shear strain, occurs at 
the edges of the bonded faces, i.e., at points (x1=±w, x2=±t/2), in an elastomer layer. Figure 8 shows the variation 
of maximum shear stress in a purely bended elastomeric bearing with its shape factor for two different stiffness 
ratios. Parallel with the earlier conclusions, reinforcement flexibility is observed to be most effective when S is 
sufficiently large and ν is sufficiently close to 0.5. From the graphs, it should not mistakenly be understood that 
the shear stress developing in an HSF bearing is usually much smaller than that in an LSF bearing. While 
interpreting on these graphs, it should be kept in mind that the graphs plot the “normalized” stress values and 
SEb of an HSF bearing can be much larger than that of an LSF bearing. 
 
 
4. CONCLUSIONS 
 
Bearings composed of several elastomer layers bonded to reinforcing sheets are widely used in many 
engineering applications. While, in most of the earlier applications, steel shim plates have been used as 
reinforcing agents in multi-layered elastomeric bearings, recent studies propose the use of flexible fiber 
reinforcement. In this way, it is believed to be possible to produce both light-weight and cost-effective isolators 
to be used in low-cost housing. 
 
Although the “rigid” reinforcement assumption is a fairly reasonable assumption in the analysis of a 
steel-reinforced bearing, it is necessary to include the effect of reinforcement flexibility while studying the 
compressive or bending behavior of a fiber-reinforced bearing. This study investigates the effect of 
reinforcement flexibility on behavior of elastomeric bearings under uniform compression and pure bending. 
 
Analyses conducted on bearings with different geometrical and material properties show that the 
compressive/bending behavior of a fiber-reinforced bearing can be considerably different than that of its 
steel-reinforced counterpart. In general, it can be said that reinforcement extensibility has the same effect on 
bearing behavior as material compressibility has. For this reason, the effect of reinforcement flexibility highly 
depends on the geometrical and material properties of the bearing. It can also be concluded that reinforcement 
flexibility is most effective when the “shape” factor of the bearing is large and Poisson’s ratio of the layer 
material is close to 0.5. 
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