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ABSTRACT: 

Worldwide research has now reached a level of integration where an effort towards the harmonization of 

procedures is absolutely needed. Such harmonization may regard, for example, the various steps that lead to the 

definition of capacity models to be included in design codes, specifically: definition of the test setup, quantities 

to be measured, identification of the basic variables influencing the phenomenon, distinction between average 

values and other fractiles, disaggregation of the model in different parts accounting for mechanics, fine-tuning 

and randomnesses, and, finally, assessment of the model against the experimental results. Test results and 

ensuing model developed according to this procedure would naturally lend themselves to be easily shared 

among the scientific community and would facilitate the task of calibrating the partial coefficients, with the 

ambitious aim of attaining a uniform reliability level among all capacity equations. This paper proposes a first 

attempt towards the harmonization of procedures for the development of capacity design equations to be 

included in codes and the execution of tests. The procedure developed, is applied to the definition of the 

debonding strength model for FRP, starting from the model proposed in the Italian Instructions CNR DT 

200-2004. The procedure has the aim of evaluate the uncertainties of the assumed model (both of the 

mechanical model and of the basic variables) to obtain a constant level of structural reliability. 

 

KEYWORDS: Design assisted by testing; capacity models; calibration; FRP debonding strength; experimental 

tests. 

 

1. ASSUMPTIONS 

 
In the following sections the steps to be undertaken for a proper and consistent development of a capacity model, 

are presented in detail. Inspiration for the procedure came from EN-1990, “EC0 (Eurocode 0). The following 

three assumptions are made:  

 a “sufficient” number of test results is available (this point will be better clarified in the next section);  

 all main geometrical and mechanical quantities are measured in the experimental tests carried out to validate 

the analytical model;  

 all random variables are normally distributed.  

 

2. DESCRIPTION OF THE PROCEDURE 

 
2.1. Development of a theoretical strength model 

 

Given a capacity mechanism, an analytical model can be developed based on the a priori understanding of the 

underlying physics of the problem (as opposed to a posteriori regression-based models, which are instead based 

on the outcomes of purposely carried out experimental tests). The model can be given as:  

 t tr b g X   (2.1) 

where:  tg X  is the capacity model, as function of all basic variables X thought to be affecting the 

phenomenon to be modeled, and b is a least-squares fine-tuning parameter accounting for all other variables (or 

secondary phenomena) not included in the theoretical mechanical model (e.g., either because they are deemed 
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irrelevant, or because their effect is not perfectly understood, or because they do not fit into the formulation, or 

because the model is intentionally kept simple).  

 

2.2. Measurement of the basic variables in tests 

 

After having defined a theoretical model, and only at this stage, should it be validated against some 

experimental results. In the tests, all (geometrical and mechanical) basic variables should be measured for each 

specimen and should be available for the model‟s validation. Geometrical quantities are usually easily measured. 

For as regards mechanical quantities (e.g., material properties), measures should be taken according to one of 

the following methods:  

 extracting a sample from each specimen before testing;  

 cutting one or more portions of each specimen; 

 non-destructive testing, after calibration on other similar specimens.  

If it is not possible to measure all basic variables of each specimen, destructive tests shall be carried out on 

purposely prepared sets of material specimens (e.g., concrete cubes). Here, mean values of the variables are 

obtained, as opposed to the previous three items, where point values of the variables are obtained.  

In order to be considered as “sufficient”, the number of tests to carry out should be as follows:  

1) If point values of the basic variables are available for each tested specimen, a single test should be carried 

out for each basic variables set Xi; when validating the model results rt against the experimental results re 

(see Step 3), comparisons should be made in terms of point values (i.e., test by test, as explained at the next 

step);  

2) If mean values of the basic variables are available for each group of tested specimens, a minimum number of 

5 tests (a test set) should be carried out for each basic variables set Xi, with i=1...5, in order to get a 

reasonable estimate Xkm of the mean values of the basic variables set in the k-th test set; when validating the 

model results rt against the experimental results re (see Step 3), comparisons should be made in terms of 

mean values (i.e., test set by test set, as explained at the next step).  

 

2.3. Model-experimental results comparison and fine-tuning 

 

Here, the parameter b is used to fine-tune the prediction capability of the theoretical model. One should proceed 

as follows:  

1) The (mean or point) values of the measured properties are placed in the capacity function  tg X  to obtain 

the (mean or point) theoretical capacity value rt to be compared with the (mean or point) experimental value 

re;  

2) The correction coefficient b is computed by the least-square method to minimize the difference between 

theoretical rt and experimental re values:  

                          
2

min ti eii
r r 

    or  
2

min tkm ekmk
r r 

     or  
 

2
min tkm ekmk

r r 
  

 (1.2) 

where: tir
 
is the theoretical capacity computed by plugging the point values xi of the basic variables used in test i 

into the function  tg X  and eir  is the experimental capacity obtained from the i-th test; tkmr  is the theoretical 

capacity computed by plugging the mean values xkm of the basic variables used in test set k into the function 

 tg X  and ekmr  is the experimental capacity obtained as the mean from the k-th test set. At this stage, the 

correspondence of the test results with the initial model hypotheses should be checked. Particularly, in order to 

verify the model significance, if the difference between theoretical rt and experimental re values is unacceptably 

large (say, more than 40% in terms of normalised values), one should try and reduce it by either:  

1) reformulating the theoretical model with a better interpretation of the underlying physical phenomena, or 

2) enhancing the theoretical model to include previously neglected variables, or 

3) increasing the number of (sets of) experiments in order to fine-tune the correction coefficient b.  

 

2.4. Definition of a probabilistic capacity model 
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A probabilistic capacity model r should be now defined to include the inevitable model error (that is, the error 

remaining even after the least-square fine-tuning):  

               t tr r b g X       (2.2) 

where   is the model error, represented by a random variable with Normal distribution with mean value 

1m   and standard deviation  . 

For the estimation of the latter, two different cases might occur:  

1) The values Xi of the basic variables X are available as point values for each test i:  

1.a) The error is evaluated for each test as:  

            
 

ei ei
i

ti t i

r r

r b g X
  

  (2.3)
 

where eir  and tir
 
are the point values of the experimental and theoretical capacity, respectively, for the i-th test.  

1.b) The standard deviation of the error is estimated through the sample standard deviation (here, it is considered 

that 1m  ): 

                             

 
1

1

numberof tests
1

n

i
iˆ , n

n




 



 




 

(2.4)
 

2) The values Xkm of the basic variables X are available as mean values for each set of k tests: 

2.a) The error is evaluated for each tests set as: 

         
 

km km

km

e e

k
t t km

r r

r b g X
  

  (2.5)
 

where 
kmer  and 

kmtr
 

are the mean values of the experimental and theoretical capacity, respectively, for the k-th 

test set.  

2.b)The standard deviation of the error is estimated through the sample standard deviation (here, it is considered 

that 1m  ):  

                  

 
1

1

numberof test sets
1

m

k
kˆ , m

m




 



 




 

(2.6)
 

For what concerns the basic variables variation, if the test population is fully representative of the population, 

the coefficients of variation 
iXV  of the basic variables can be directly determined from the test data. In most 

cases, the coefficients of variation are determined based on a priori knowledge.  
 

2.5. Estimation of mean and variance of the capacity model 

 

The characteristic value of the capacity model should be sought starting from its statistics, under the normality 

assumption. For the above-defined probabilistic function  t tr r b g X      , the first-order approximation 

of the mean is (since m = 1):  

                  Em t mr r b g X    (2.7) 

The first-order approximation of the variance is: 

       2 2Var Var Var Cov
n

i i i j i ji i
j i

r c X c c c X X 


        
       (2.8)

 

where 
i

i
m mX ,

r
c

X 





 and 

m mX ,

r
c







 are the values of the partial derivatives of the function r with respect 

to the basic variables Xi and to the error , respectively, computed at the mean values of Xi and , and where the 

covariance  Cov i jX X  is given by:  
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             
1

1
Cov E E E E

n

i j i im j jm i j i j il iml jl jml
l

X X X X X X X X X X X X X X
n 

        
    (2.9)

 

If the basic variables are considered as statistically independent, the last term in the equation. (2.9) is zero.  

 

2.6. Estimation of the characteristic value of the capacity model 

 

The expression correctly representing its characteristic value kr  is finally found as:  

                   
1 2

1 64 Vark mr r . r       
(2.10)

 
2.7. Check of the error properties 

 

To check if the residuals (model errors) satisfy the initial hypothesis, some tests must be performed:  
1) Check of the normality hypothesis of error (normality of residuals): an assumed probability distribution can be 

verified by:  

1.a) Construction of the probability graph 

1.b) Execution of a “goodness-of-fit” test as the  Kolmogorov-Smirnov test (K-S) or the chi-square ( 2 ) test.  

2) Check of the hypothesis of omoschedasticity of error: the test for the omoschedasticity of the error allows 

to verify if the variance of the residuals does not vary with respect to the independent variate; the error 

variability must be plotted vs. the capacity variability; if the residuals are regularly arranged, the model is well 

specified.  
 

3. APPLICATION 

 
The procedure explained above is here applied for developing a consistent formula for the characteristic 

debonding strength of an FRP strengthening. Of course, the procedure may be applied to any capacity formula.  

 

3.1. Development of a theoretical strength model. 

 

Several formulations have been developed for the debonding strength of FRP fabrics externally bonded to 

concrete. A possible one, which is here studied for demonstration purposes, is the one given in the Italian CNR 

Guidelines, CNR DT-200/2004. There, the debonding strength is expressed as a certain function of some basic 

variables; here only the functional form is retained, with no consideration of characteristic/design values for the 

basic variables: 

                    

2 G b f c ct
fd

f

k k E f f
f

t

 


 

(3.1)
 

where Gk  is a least-square fine-tuning parameter (what above was called b); bk  is a geometric model 

parameter depending on the width of both the strengthened beam and the FRP system; fE , cf  and ctf  are 

basic random variables: Young‟s modulus of FRP strengthening, concrete compression strength, and concrete 

tensile strength, respectively;
 ft

 
is the FRP strengthening thickness.  

 

3.2. Measurement of the basic variables in tests. 

 

The procedure is here applied using experimental test results from the literature (Chajes et al. (1996), Miller et 

al. (1999), Pellegrino et al. (2005), Brosens et al. (2001), Nakaba et al. (2001)) showed in Alessandri et al.. It 

should be noted that in all collected cases the basic variables fE , cf  and ctf  are given in terms of mean 

values obtained from tests on samples extracted from the specimens before testing.  

 

3.3. Model-experimental results comparison and fine-tuning 

 

The model is fine-tuned by calibration of the coefficient Gk , which should be carried out by comparing the 



The 14
th  

World Conference on Earthquake Engineering    

October 12-17, 2008, Beijing, China  

 

 
theoretical values of the debonding strength with the experimental ones. Through the least-squares method, the 

value of Gk  is determined so to minimize the difference between the experimental value of the maximum 

debonding force, max,eF , and the theoretical one, given by:  

 

                      2max,t f f fd f G b f f c ctF b t f b k k t E f f      
 

(3.2)
 

 

where bf is the width of the FRP. The obtained value is 0 107Gk . . A comparison between theoretical and 

experimental results is given in Fig. 1. The available experimental tests are grouped according both geometrical 

and mechanical properties.  

 

 
Fig. 1. Comparison between theoretical and experimental results. 

 

3.4. Definition of the probabilistic capacity model 

 

The assumed probabilistic model of the capacity is:  

                
2 G b f c ct

fd
f

k k E f f
f

t


 
 

 
(3.3)

 

where   is a random variable with unit mean and standard deviation  .The error   in the equation of fdf  

is evaluated as the ratio between theoretical and experimental values of the maximum force maxF ; using the 

tests results, it is possible to calculate the mean value, assumed as unit value, and the variance, given by:  

                Var Var 0 12
max,e

max,t

F
.

F


 
  

  
 (3.4)

 

The basic random variables fE ,
 

cf  and
 

ctf  are considered as statistically independent among them. As for 

the coefficients of variation, for cf  and ctf  a value of 
cf

V  = 
ctfV  = 0.2 has been assumed, while for fE  

a value of 
fEV = 0.0 has been taken.   

 

3.5. Estimation of mean and variance of the capacity model 

 

According to equation (2.8), the mean value of the debonding strength is:  

             
2 G b fm cm ctm

fdm
f

k k E f f
f

t

 


 
(3.5)

 

Therefore the variance of 
df

f , expressed in a simplified form, is given by:  
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   
     

 
2

1 41 2
1 2 2 2

Var Var Var1 1 1
Var Var

4 16 16

f c ct
fd fm cm ctm

fm cm ctm

E f f
f k E f f

E f f


 
          
    

 
 (3.6)

 

 

3.6. Estimation of the characteristic value of the capacity model 

 

By applying equation (2.11), the characteristic value of fdf , with the assumptions made above on the 

coefficients of variation and the value computed in the equation (3.5), becomes:  

                    
2

0 4
G b fm cm ctm

fdk
f

k k E f f
f .

t

 


 
(3.7)

 

Note that: a) the equation yielding the „true‟ characteristic value of the capacity is now expressed in terms of the 

mean values of the basic variables, b) their variability is contained within the external coefficient (0.4), which 

also includes the model error, c) the coefficient kG has the meaning of a fine-tuning coefficient.  

 

3.7. Check of the error properties 

 

1) Check of the normality hypothesis of error (normality of residuals):  

1.a) Construction of the normal probability graph: the data for the model error  ,
 
obtained from the literature 

and reported in Alessandri et al., are arranged in increasing order and are plotted at the cumulative probability 

 1m n  . The resulting graph of data points (Fig. 2) shows a linear trend that fit the straight line passing 

through the points  0 5 1m. , 
 

and  840 84 1 346.. , .  ; m  is the mean value of the model error  , and 

84 1 346. m .      is the value with probability  p = 0.84; the normal distribution is therefore applicable to 

the model error.  

 

 
Fig. 2. Model error plotted on a probability paper. 

 

1.b) Kolmogorov-Smirnov test for the normality of residuals: the validity of the assumed Normal distribution is 

validated also by the Kolmogorov-Smirnov “goodness-of-fit test”. The maximum difference is computed 

between  nS   and the theoretical cumulative distribution function (CDF)    mF N ,     (Fig. 3).  

                0 177n nD max F S .


     (3.8) 

 

The observed value nD  is compared to the critical value nD
, which is that value by which:  

                1n nP D D   
 

(3.9)
 

The test is here performed at the 5% significance level ( 0 05.  ). The critical value of 0 286nD .   is evaluated 
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by numerical interpolation; since it is verified that the maximum discrepancy is less than 0 286nD .  , the 

Normal distribution hypothesis is verified at the 5% significance level.  

 

 
Fig. 3. Cumulative distribution of the model error   

 

2) Check of the hypothesis of omoschedasticity of error: to verify the hypothesis of omoschedasticity of error, 

the residuals are plotted vs. the theoretical maximum force max,tF  (Fig. 4); the points on the graph cover an 

homogeneous area around the horizontal line at 1m  ; this means that the variance of the residuals does not 

vary with respect to the independent variate and thus the model is well specified.  

 

 
Fig. 4. Check of the hypothesis of omoschedasticity of the residuals 

 

In the study, a comparison with the capacity model of the debonding strength fdf  described in CNR 

DT-200/2004, has been performed. The parameter Gk  is calibrated on the basis of experimental tests in order 

to obtain the characteristic value of fdf . The statistical analysis of tests results had provided an mean value 

0 064
mGk .

 
and a standard deviation 0 023

Gk .  ; the 5th percentile of the statistical distribution had been 

found as 0 026
kGk . . The characteristic value of the debonding strength was then obtained by plugging in the 

equation the characteristic values of both the concrete compression strength, ckf , and the parameter Gk  

(therein rounded to 0.03), while the other variables were given as mean values:  
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2 f Gk b ck ctm

fdk ,CNR
f

E k k f f
f

t




 
(3.10)

 

The comparison between this formula and that (3.7) obtained with the proposed procedure shows that: 

                0 84dk

dk ,CNR

f

f

f
.

f


 (3.11)
 

that is, the equation obtained with proposed rigorous procedure yields capacity values that are approximately 15% 

lower than those obtained with the formula appearing in CNR DT-200/2004, thus showing that there are cases 

where the approximations introduced as highlighted in the introduction to this paper in some formulations, often 

lead to non-conservative estimates of the design values.  

 

5 CONCLUSIONS 
It has been proposed a procedure to develop, in a consistent manner, design equations that allow to compute the 

capacity of resisting mechanisms with controlled reliability. Also, the procedure shows how experimental tests 

should be treated for fine-tuning the model and for arriving at the „true‟ characteristic value of the analytical 

capacity models. The paper deals, in philosophical terms, with how theoretical models should be developed, 

with how experimental tests should be performed, especially regarding the parameters to measure, and with how 

to include the values of the basic variables in the equation of the theoretical model. The validity of the model 

should then be checked by means of a statistical interpretation of all available test data. The formulation here 

proposed then includes a new variable for the model error to be evaluated from experimental results. Once the 

statistical parameters of the model error are known, it is possible to define the parameters of the capacity model 

and to evaluate its characteristic value for application in design. The proposed procedure is applied to the 

development of a capacity formula for the debonding strength of FRP, starting from a formulation proposed in 

the Italian CNR Guidelines. The comparison with the latter for the evaluation of the characteristic value of the 

debonding strength shows that a non-rigorous procedure can yield non-conservative values of the capacity. The 

proposed procedure is currently being applied to a large series of capacity equations, in order to check for their 

consistency and reliability.  
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