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ABSTRACT : 

In the literature concerning the characteristic hypothesis, one basic question is widely discussed: is it possible
to justify (by statistical tests) favouring the characteristic magnitude model for the interpretation of available
catalogues? No generally accepted answer has been given now a days. In a previous paper (Grandori et al., 
2008) we analyzed a different question, perhaps more useful from the engineering point of view: is it possible
to judge (on the basis of statistical tests) which one of two competing magnitude models is more reliable (all 
other things being equal) for the evaluation of a specific hazard quantity at a given site? 
In that paper we described a method which can give an answer to this question, and we studied the controversy 
surrounding the comparison between “characteristic-type” magnitude models and the classic doubly truncated
exponential model. We found that in many cases a characteristic magnitude model is more reliable than the
exponential model.  
In the present paper we recall the main features of the method and we apply it to the comparison between a
mathematical model FM and an empirical (non parametric) distribution F*. The aim is to find an empirical F*
which is more reliable than FM, thanks to the substantial reduction of possible errors due to the use of a wrong 
model FM. 
We do not give a general method for the construction of such F*, nor we maintain that it exists in all cases. We
simply show how, in a study case, we found the way to construct a very satisfactory F*.  

KEYWORDS: Magnitude distribution, credibility of the model, comparison between competing
models.  

1. INTRODUCTION  
 
In the frame of probabilistic seismic hazard analysis, applied to a given site X, one problem is the choice of an
appropriate mathematical model of the magnitude-frequency law for the events that can strike site X. The 
comparison between the reliability of competing models can be based on “the agreement with the current fault
segmentation concepts, observations and mechanics-based earthquake simulations” (Wu, Cornell and 
Winterstein, 1995). However, as regards discriminant statistical tests, it is generally recognized that the seismic
record in most seismic zones is too short for a meaningful statistical comparison: “all the relations proposed in 
the literature appear consistent with the available seismicity catalogs” (Araya and Der Kiuregan, 1998), even if
different relations may lead, all other things being equal, to important differences in the final results of the
seismic hazard analysis. 
In a recent paper (Grandori et al., 2008) we considered the comparison between two competing magnitude
models on the basis of the following criterion: instead of asking which one of the two models explains better
the data of the available catalog, we ask which one is more reliable for the estimation of a specific target
quantity, A, related to the seismic hazard at the given site X. In the same paper it is shown how the criterion
works when the comparison is between two mathematical distribution models. The aim of the present paper is 
to study, with the same criterion, the competition between a mathematical model and a non parametric
empirical distribution F*, free (by its nature) from modeling errors. 
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2. THE METHOD  
 
We call F0 the unknown true magnitude distribution )mM(P);m(FM ≤=ϑ and we assume that: 1) it is 
independent of the space and time coordinates of the events; 2) the available catalog is a random sample S°
drawn from F°.  
We compare the competing models “all other things being equal”. Precisely, we assume that the models are 
applied to a test-site for which all other elements that contribute to the estimation of A are known and
independent of the magnitude distribution FM. As a consequence, if a magnitude distribution jF  is given (both 

form and parameters), then a known procedure Z, applied to jF , yield the quantity Aj:  
 

 )F(ZA jj = . (2.1) 
 
In particular, obviously, A0 = Z(F0) is the true value of A. 
The fundamental tool for the achievement of the comparison is the evaluation, for each model Fi, of the 
foreseeable errors in estimating A, under a given hypothetical “true” distribution F0. The distribution of such 
errors will be described by: 1) the mean value mÂ  of 1000 independent estimations obtained from 1000 
random samples S0 drawn from F° with the same size as the available catalog; 2) the standard deviation σ of the 
1000 estimates of Ai; 3) an indicator 0

iΔ  that we call the “credibility” of the model Fi with respect to F0: 
 

 { }00
i

0
i kAAÂ P <−=Δ , (2.2) 

 
where iÂ is the estimator of A with the model Fi, and the parameter k defines a conventional limit. 
The selection of the form Fi is affected with the epistemic uncertainty, while the statistical uncertainty, due to 
the randomness of the sample S0, concerns the estimation of the parameters. 0

iΔ  is a synthetic index that 
accounts for both these uncertainties and is connected, through the parameter k, with a level of error which is 
considered meaningful in the estimation of A.  
 
 
3. THE COMPARISON BETWEEN MATHEMATICAL MODELS 
 
Let F1 and F2 be the mathematical forms of two competing models. A preliminary “basic approach” proceeds
through the following four steps. 
The first step is the analysis of the errors of F1 under the hypothesis that the true magnitude distribution has the
same mathematical form as F1 (i.e. F1 is the right model). The results of this analysis give a measure of the
statistical uncertainty connected with the use of the model F1. A second step regards again the errors of F1, but 
under the alternative hypothesis that the model F1 is wrong (in particular because the truth has the mathematical
form of the competing model F2). This second experiment is representative of the robustness of the model F1. 
The third and fourth steps, with analogous procedure, give an idea of the statistical uncertainty and the
robustness of the model F2. 
The results of the basic approach open interesting statistical perspectives, as shown for instance by the 
application to the following case. 
The test-site X has the features that are plausible for a site located in a seismic zone of Southern Italy. The
events are uniformly distributed over the zone and follow a Poisson process. The rate of occurrence is 0.13 
events per year. The number of events in the catalog is n=40, and the lower cutoff of the catalog is m0=4.  
The target quantity A is the peak ground acceleration (PGA) with 500-year return period at the site X: 
A=a(500). We assume that for the estimation of a(500) an error larger than 20% is meaningful from the 
engineering point of view; i.e. we assume k=0.2. 
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The first model, FE, is the classic doubly truncated exponential distribution derived from the Gutenberg and
Richter relation.  
The second model, FC, is a mixture between the exponential and a linear distribution defined in the two fixed
non overlapping ranges [m0 mE] and  [mE m1], a hybrid model in which the relative frequency of strong
“characteristic” earthquakes is given by the parameter p, that is the weight of the linear distribution component.
By hypothesis m1-mE=0.5.  
The corresponding probability densities fE and fC are shown in the Figures 1 and 2.  
 

  
Figure 1 Exponential model m0=4, m1=7, b=0.9 Figure 2 Hybrid model m0=4, m1=7, b=0.9,p=0.05 

p = area between mE and m1 
 
The numerical computations have been carried out by a systematic use of the Montecarlo method for the
production of the random samples S0, and by the maximum likelihood (ML) method for the estimation of 
parameters.  
First step of the basic approach: the hypothetical truth F0 is a truncated exponential distribution with the 
parameters 7m0

1 = , 9.0b0 = , shortly indicated exp(7,0.9). The selected model F1 is exactly a truncated 
exponential model exp(m1,b), whose parameters have to be estimated from each one of the 1000 random
samples S°. However, the ML estimator of m1 is biased (Pisarenko et al., 1996), on the other hand, at present 
there is no generally accepted method for estimating m1 (Kijko, 2004). At this point, we introduce a simplifying 
hypothesis, the influence of which will be discussed later in detail: we assume that m1 has been correctly 
estimated (e.g. on the basis of geological elements); i.e. the estimate im̂  coincides with the true value 0

1m .
Thus the model becomes exp(7,b) and from each sample S° only the b-value has to be estimated; given m1 the 
ML estimator of b is unbiased.  
The results of the numerical computations are shown in Table 3.1, first row. The mean value mÂ coincides 
with A°; the dispersion of the estimates leads to a credibility Δ=0.68. 
Second step. Let us see what happens with the same model if the truth is different; for instance a hybrid 
distribution with the same parameters 7m0

1 =  and 9.0b0 = as in the previous case, but with a 5% of the 
events concentrated between magnitude 6.5 and 7: shortly, hybr(7,0.9,0.05). Still keeping the hypothesis that 
the true m1 is known, the results (Table 3.1, second row) show how great may be the influence of the epistemic
uncertainty on the reliability of the truncated exponential model: the value of A is remarkably underestimated
and the credibility becomes very small.  
Third and fourth steps. The behavior of the hybrid model (Table 3.2) is quite different: it gives good estimate of
A, with credibility 0.6. if it is the right model; and behaves very well even if the truth is a truncated exponential
distribution. 
The high effectiveness of the hybrid model derives from the fact that, on the one hand, the parameter p is strictly 
connected with the relative frequency of strong earthquakes and, on the other hand, the quantity a(500) is mainly
governed by such events. 
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Table 3.1. Results obtained when the truncated exponential is the right model (first row) and when it is a wrong model
(second row). 

model truth A0 mÂ  σ Δ 
exp(7,0.9) 0.19 0.19 0.037 0.68 exp(7,b) hybr.(7,0.9,0.05) 0.38 0.24 0.050 0.10 

 
Table 3.2. Results obtained when the hybrid is the right model (first row) and when it is a wrong model (second row). 

model truth A0 mÂ  σ Δ 
hybr.(7,0.9,0.05) 0.38 0.36 0.091 0.60 hybr.(7,b,p) exp(7,0.9) 0.19 0.21 0.051 0.59 

 
In conclusion, the results of the above described basic approach (which is one of the examples contained in Grandori
et al., 2008) would suggest the hypothesis that FC is more reliable than FE for the estimation of a(500) at site X. 
However, before accepting this hypothesis, two further explorations are needed.  
First, the results of the comparison must be in favour of FC for a plausible range of the “true ”parameters 0

1m , b0. 
Second, if another model FD is considered to be plausible, the two models FC and FE must be compared also under
the hypothesis that the truth has the form FD. 
If all the above mentioned tests are in favour of FC, it can be concluded that a purely statistical scenario strongly 
supports the hypothesis that FC is more reliable than FE for the estimation of a(500) at site X.  
Note that, being the comparison based on 1000 random samples S° (1000 possible catalogs) drawn from each
hypothetical true distribution, the result of the competition does not depend on the data contained in the really 
available catalog, the role of which deserves a few comments. 
The catalog cooperates with geological and geophysical knowledge by suggesting plausible models. Moreover, once
a model has been chosen, the catalog is essential for the estimation of the parameters. 
The point is precisely the choice between competing models, given that “all the relations proposed in the literature 
appear consistent with the available seismicity catalogs”. However, it should be noted that the result of the 
competition between two models depends on the hazard quantity that one wants to infer from the magnitude
distribution. For instance it may happen that F1 is more reliable than F2 for the estimation of a(500), while F2 is more 
reliable than F1 for the estimation of a(50). This is the reason why it has been suggested (Grandori et al. 2003) to
compare the competing models looking at their credibilities 0

1Δ  and 0
2Δ in the estimation of the target quantity A. 

It is true that the real distribution F0 is not known, but in that paper it has been shown how, starting from the 
available catalog, it is possible to obtain, under some reasonable hypotheses, the probability that 0

1Δ > 0
2Δ . In other 

words, thanks to the introduction of the credibility index, the catalog can lead to a discriminating symptom; i.e. it is
not always true that the proposed models are equally consistent with the available seismic catalogs: it depends on the
comparison criterion. Two ways are then open to the aim of obtaining more stringent results. One way is the method
that has been summarized as yet, which is only based on the mathematical structure of the two models and on the
features of the site, while it is independent of the available catalog. In a second way, on the contrary, the catalog
becomes the main tool leading, through a non parametric procedure, to a substantial reduction of possible errors due
to wrong mathematical modelling. This second way is illustrated in what follows.  
 
 
4. A NON PARAMETRIC PROCEDURE 
 
As we observed before, the robustness of the hybrid model, as far as the estimation of a(500) is concerned, depends 
mainly on the fact that the parameter p derived from each sample S0 is strictly connected with the relative frequency 
of strong earthquakes in the sample. If we abandon mathematical models and from each sample we derive an
empirical distribution F*, for instance the cumulative frequency polygon (CFP), we could expect to obtain a
procedure with robustness similar to that of the hybrid model. Actually, the CFP follows by its nature the tail of the
sample. Let us try with a very simple construction of the empirical distribution: the values of F* are derived from
each sample S0 for magnitude less than 5,6,6.5,7,7.5 (an example in Figure 3). The Table 4.1 shows the results
obtained with this non parametric procedure, compared with those obtained from the mathematical models.  
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Figure 3 CFP of a sample S0 drawn from F0=exp(7,0.9) 

 
Table 4.1 Comparison between the empirical F* and the mathematical models. 

truth A0 model Am ΔR Δw Δ* Δ*/ΔR 
exp(7,b) 0.19 0.68   

hybr.(7,b,p) 0.21  0.59  exp(7,0.9) 0.19 
F* 0.21   0.58 

0.86 

hybr.(7,b,p) 0.36 0.60   
exp.(7,b) 0.24  0.10  hibr.(7,0.9,0.05) 0.38 

F* 0.36   0.59 
0.98 

 
With simplified symbols, ΔR is the credibility of the right mathematical model (RMM), ΔW is the credibility of 
the wrong mathematical model and Δ*is the credibility of the empirical F*.  
As expected, the behavior of the non parametric procedure is similar to that of the hybrid model. The
exponential model shows a slightly larger credibility when it is the right model, but it is by far loosing the 
competition if the truth is the hybrid distribution. The results of Table 4.1 are partially a remake and partially an 
extension of those published in a previous paper (Grandori et al., 2006). The fact that a simple empirical 
procedure may have a credibility Δ* not far from the credibility ΔR of the RMM is interesting; and it is worth 
examining closely a few aspects of this comparison.  
Let us consider in detail the comparison between the first and the third row of Table 4.1, i.e. between the RMM
and the empirical F* (when the truth is a truncated exponential distribution). The comparison is affected with 
two main approximations.  
First, we did not take into account the uncertainty in the estimation of m1: the introduction of this uncertainty 
would decrease the credibility ΔR. On the other hand, the very simple technique adopted for the construction of 
F* is open to improvements, that would lead to an increase of the credibility Δ*. It is important to analyze the 
quantitative influence of these two possible corrections on the ratio Δ*/ΔR. 
It is true that there is no generally accepted method for estimating m1. However, the applications of various 
methods described in the literature give some information about the uncertainty of such estimation. For
instance, Pisarenko et al. (1996) in the case of Southern Italy, with 44 events M≥5 and max observed M=7.1, 
find for the estimate 1m̂ a standard deviation (SD) of the order of 0.5. Kijko (2004) finds for Southern
California with a non parametric procedure 45.054.8m̂1 ±= . In the same paper Kijko uses also synthetic
data generated according to a G-R relation with m0=6, m1=8 and b=1. He finds that the bias of the estimate 

1m̂ is low: it does not exceed 0.1 unit of magnitude if the number of earthquakes in the catalogue is N=50.
However the bias is larger if (m1-m0)>2: it may rich 0.3 units of magnitude if (m1-m0)=3, as in our site X. 
In order to take into account in a synthetic approximate way the available information, given the conditions of
site X, we do not assign now to 1m̂ the true value 0

1m , but we assume the estimate 1m̂ to be a random 
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variable: normally distributed with mean 0
1m =7 and SD=0.7 in the range 35.8m̂65.5 1 ≤≤ ; being the 

residual probabilities uniformly distributed in the two extreme classes 65.5m̂55.5 1 ≤≤ and 

45.8m̂35.8 1 ≤≤ . With reference to the hypothetical truth )9.0,7exp(F0 = , the RMM will be now 
indicated exp( b,m̂1 ) and, in order to remember this kind of estimation for m1, the relative credibility will be 

.RΔ̂  

We considered 27 classes of 1m̂ , width 0.1 unit, each class being identified by its center ( 7m̂1 = means 

05.7m̂95.6 1 ≤≤ ). The credibility of the model exp )b,m̂( 1 with respect to the truth )9.0,7exp(F0 = is 
given by  
 

 ∑
−

Δ=Δ
15

14

i
RiR

ˆpˆ  (4.1) 

 
where pi is the probability that 1m̂ is in the class i, and i

RΔ̂  is the corresponding credibility of the model 
exp )b,m̂( 1 . 

The values of i
RΔ̂  in the field i>0 (that is 7m̂1 ≥ ) are simply obtained by assuming for each class “given

11 m̂m = ” (instead of “given m1 = 7” as in Table 3.1). As shown in Table 4.2, the credibility i
RΔ̂ decreases 

regularly when m1 increases, even if the variations are not dramatic. 
 

 
Table 4.2 Hypothetical truth F0 = exp(7,0.9). pi=prob. that im̂  

is in class i. i
RΔ̂ = credibility of the RMM if im̂  is in class i. 

i class pi i
RΔ̂  pi × i

RΔ̂  
1 7.0 0.0558 0.675 0.0376 
2 7.1 0.0553 0.666 0.0369 
3 7.2 0.0536 0.648 0.0348 
4 7.3 0.0511 0.637 0.0325 
5 7.4 0.0478 0.629 0.0301 
6 7.5 0.0437 0.621 0.0271 
7 7.6 0.0392 0.616 0.0242 
8 7.7 0.0345 0.613 0.0211 
9 7.8 0.0299 0.609 0.0182 

10 7.9 0.0252 0.606 0.0153 
11 8.0 0.0210 0.603 0.0127 
12 8.1 0.0171 0.602 0.0102 
13 8.2 0.0136 0.601 0.0082 
14 8.3 0.0107 0.600 0.0064 
15 8.4 0.0294 0.600 0.0176 

   ∑=  0.3329 
 
In the field i<0 (that is 7m̂1 ≤ ), it is difficult to catch the credibilities i

RΔ̂ , due to the fact that many samples 
drawn from F0 will have maximum observed magnitude larger than 1m̂ . In order to overcome this difficulty, 

we accept the approximate hypothesis that the distribution of the credibilities i
RΔ̂  in the field 7m̂1 ≤ is 
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symmetrical to that of the field 7m̂1 ≥ . So the credibility of the RMM becomes:  
 

 63.00376.023329.0ˆ
R =−×=Δ  (4.2) 

 
i.e. the uncertainty in the estimation of m1 reduces the credibility of the RMM from 0.68 (Table 3.1) to 0.63: a 
reduction of the order of 7%. 
As to the empirical F*, its construction may be changed in many ways (see for instance Grandori et al., 2004) 
Here we propose a correction that fulfils two main conditions: first, to keep a high simplicity and, second, to 
increase as much as possible the credibility of the empirical procedure. Starting from the simple F* of Figure 3, 
the corrected distribution ∗

hF  is given by: 
 

 
m

mm
)F1(hFF 0

h
−

−+= ∗∗∗ . (4.2) 

 
The construction of ∗

hF  is very simple and, what is more important, the factor h can be adjusted in order to
obtain a better performance of the empirical procedure. For instance, in the case of hypothetical truth F0 = 
exp(7,0.9), the Figure 4 shows the influence of the factor h on the results obtained with the empirical ∗

hF . With 

h=1.25 the expected estimate of A ( h
mA∗ )coincides with A0 and the credibility of the empirical ∗

hF is even 

larger than the credibility of the RMM ( ).04.1ˆ/ Rh =ΔΔ∗  
The factor h has been adjusted looking at the hypothetical truth exp(7,0.9). However, with h=1.25, the 
empirical procedure ∗

hF  is very robust; Table 4.3 shows the results concerning different hypothetical truths. In

all the considered cases, keeping h=1.25, we obtained Rh Δ̂≅Δ∗ . 
The application of the non parametric procedure that we just described refers to the evaluation of a(500) at the
site X; the results obtained cannot be simply extrapolated to other cases. They only show that, once a specific 
mathematical model Fi has been selected, it is worthwhile to explore the possible existence of a non parametric
F* (our ∗

hF  is just an example) having credibility Δ* practically equal to the credibility i
RΔ̂  of Fi (remember 

that i
RΔ̂  is evaluated under the optimistic hypothesis that Fi is the right model). If such a F* exists, its 

adoption instead of the mathematical Fi reduces substantially possible errors due to epistemic uncertainty.  
 
 
5. CONCLUSIONS 
 
The comparison between two plausible competing magnitude models is often difficult because the available
catalog is too short. This difficulty can be overtaken by comparing the foreseeable errors made by the two 
models (in the estimation of the target quantity A) under appropriate hypothetical “true” magnitude
distributions. Following this method it is possible to obtain a statistical scenario which suggests rational
decisions when facing the choice between two mathematical magnitude models. 
In particular, we considered the controversy surrounding the comparison between the classic exponential model
FE and a “characteristic type” model FC, applied to the estimation of a(500) at a given test site X. The results of 
a preliminary basic approach are clearly in favour of FC. Further results are contained in our previous paper 
(Grandori et al., 2008). Once a mathematical model Fi has been selected (whatever method has been used for
the selection) the non parametric procedure may lead to a further reduction of possible errors due to wrong
mathematical modeling. This happens if an empirical F* succeeds in reaching a credibility Δ* practically equal 
to the credibility RΔ̂  of the model Fi. In this case let us call A* the value of a(500) obtained from the
empirical F* applied to the available catalog, and Ai the value corresponding to Fi. In spite of the fact 
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RΔ̂≅Δ∗  it may be that A* and Ai differ notably from one another; this would be a symptom suggesting that 
Fi is a wrong model and that A* is more reliable than Ai.  
 

 
Figure 4 Performance of *

hF as function of h in the case F0 = exp(7,0.9) 
 

Table 4.3 Performance of *
hF (h=1.25) versus RMM 

truth *
hΔ / RΔ̂   truth *

hΔ / RΔ̂  
exp. (7,0.9) 1.04 hybr. (7,0.9,0.05) 1.11 
exp. (7,1.3) 1.04 hybr. (7,1.3,0.05) 1.27 

exp. (7.2,0.9) 1.02 hybr. (7.2,0.9,0.05) 1.17 
exp. (7.2,1.3) 1.05 hybr. (7.2,1.3,0.05) 1.09 
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