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ABSTRACT : 

It has been pointed out that buildings during strong earthquakes have been subjected to foundation uplift. The 
rocking motion accompanied by uplift can reduce the damage of the structures as mentioned in some previous 
studies. To understand the general properties of transient uplifting behavior of multi-story buildings, studies 
with simpler model and mathematical expressions are useful. In this paper, dynamic behavior of buildings 
allowed to uplift is investigated by means of classical modal analysis. The system considered is a uniform 
shear-beam model on a rigid ground. The equations of motion are derived and eigenproblem is solved to 
investigate the modal properties during uplift. Initial velocity analysis during the first excursion of uplift is 
carried out to show the responses of transient rocking motion accompanied by uplift. In addition to the 
confirmation of significant reduction effect, it is pointed out from the results that the relatively complicated 
uplift responses at a glance can be recognized as natural consequences of higher modes’ properties and their 
behaviors.  

KEYWORDS: rocking vibration, uplift, higher mode, equivalent modal mass and direction, 
potential energy of self-weight, distribution of story shear coefficient 

1. INTRODUCTION 
 
It has been pointed out that buildings during strong earthquakes have been subjected to foundation uplift 
(Rutenberg et al. 1982, Hayashi et al. 1999). Some studies dealing with foundation uplift in flexible systems 
have already been conducted (e.g. Muto et al. 1960, Meek 1975, 1978, Psycharis 1983, Yim et al. 1985). The 
authors also studied experimentally and analytically from the point of view of utilizing transient uplift motion 
for reduction of seismic response (e.g. Midorikawa et al. 2003, Ishihara et al. 2006a, 2006b, 2007).  
To understand the general properties of transient uplifting behavior of multi-story buildings, studies with 
simpler model and mathematical expressions are useful. 
In this paper, dynamic behavior of buildings allowed to uplift is investigated by means of classical modal 
analysis. The system considered is a uniform shear-beam model on a rigid ground. It represents multi-story 
buildings allowed to rock accompanied with uplift motion without sinking into the ground. 
 
2. SYSTEM CONSIDERED AND MODAL PROPERTIES 
 
2.1. System considered  
 
Figure 1(a) shows a uniform shear-beam model allowed to uplift with a typical segment of infinitesimal 
height dx located at the distance x from the base. The base of the system is constrained against horizontal 
motion, so no deformation and slippage is allowed between the base and the ground. It is assumed that the 
section is rigid and that displacement is small enough not to need to consider the so-called P–Δ effect. 
Generally speaking, an ordinary multi-story building does not have the constant story shear stiffness through 
the height. In slender buildings, deformations due to columns’ shortening/elongation should be often 
considered. Nevertheless we adopt the uniform shear-beam model to make the mathematical expressions of 
motions as simple as possible and to reduce the number of structural parameters. 
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(a) Uniform shear-beam model allowed to uplift   (b) Free body diagram of a typical segment 

Figure 1 System considered 
 
2.2. Eigenproblem  
 
Equations of motion of the segment (see Fig. 1(b)) for free vibration during uplift are as follows : 
 

Horizontal : Adx y Q dxρ ′⋅ =                                 (2.1)

Rotational : ( )2 3Adx B m dx Qdxρ θ ′= +                              (2.2)

 
where ρA is the mass per unit height, y = y(x, t) = xθ + s(x) is horizontal displacement, s = s(x, t) is horizontal 
displacement due to shear deformation, θ (t) is rotational angle of the section,  is shear force, r is 
shear stiffness, B is width or span, m is bending moment. The dots and primes signify differentiation with 
respect to time t and coordinate x.  

Q rs′=

Provided that the displacement is small, we can recognize the motion of the segment to be the rotation with 
radius Z(x). So we can write the displacement y(x, t) = Z(x)θ(t). Let us denote the circular frequency by p. For 
free vibration, 2pθ θ= − . Considering the boundary condition, the mode shape (eigenvector) Z(x) is defined 
as 
 

( ) ( ) ( ){ }sin sinHZ x H Z H x Hξ ξ= ,    tanHZ H ξ ξ=                (2.3a,b)

where pH A rξ ρ=  is dimensionless frequency and H is the height. The subscript “H” denotes the 
location at the top, i.e. x = H. Note that Eqn.2.3 defines the length of the eigenvectors, not within a scalar 
multiple. If ξ approaches zero, the mode shape converges that of rigid block, i.e. Z(x) → x, when ξ → 0. 
Integrating Eqn. 2.2 over the height, we obtain the frequency equation for the case under consideration. 
 

( ){ }2 21 3HZ H B H 2ξ− =                                   (2.4)

 
Because Eqn. 2.4 is transcendental, the dimensionless frequencies must be found numerically. The roots of 
Eqn. 2.4 may be envisioned as representing the intersection of the function of ξ on the left-hand side and the 
quadratic function of ξ and H/B on the right-hand side. Figure 2 shows an example of functions on both sides 
of Eqn. 2.4. The values of ξ at the intersections are the dimensionless frequencies in an uplifting phase. The 
first mode has zero frequency corresponding to the rigid body mode rotating around the edge of the base. 
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Vertical dashed lines show the dimensionless frequencies ξfj in full contact with the ground, where 

( )2 1 2fj fjp H A r jξ ρ= = − π  ( j=1,2,…), in which pfj is the corresponding circular frequency of mode j. 
Eigenvalue separation property (e.g. Bathe 1996), which is well known as a general property of eigenvalue 
problems, can be seen in the figure, i.e. ξj < ξfj < ξj+1.  
Figure 3 shows the relationships between ξj and H/B. For relatively slender structures, the second frequency is 
nearly equal to or slightly less than that in full contact phase. The more slender the structure is, the larger the 
higher frequencies become. 
Figure 4 shows the mode shapes for an uplifting phase rocking around the right edge of the base. 
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Figure 2 Functions of ξ in Eqn. 2.4 (H/B=4)  
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Let us confirm the orthogonal properties by considering modes j and k. For j≠k, orthogonality relationships 
can be derived as , 

2 3 0j kA Z Z dx MBρ +∫

(a) 1st      (b) 2nd  

(c) 3rd      (d) 4th  

= ,     ( )( )1 1j kr Z Z dx′ ′ 0− − =∫                   (2.5a,b)

For j=k, 
2 2 3k kA Z dx MB Iρ + ≡∫ ,      ( )2 21kr Z dx p I′ − = −∫ k k                    (2.6a,b)

where Ik is the moment of inertia of mode k with respect to θk, M=ρAH is the total mass of the structure. Note 
that the magnitude of Ik is fixed because the eigenvectors Z(x) is defined not within a scalar multiple in Eqn. 
2.3. Ik can be calculated as a function of ξk , ( ){ } { } ( )2 2 21 sin 2 2 2 cos 3k k k k kI MH B Hξ ξ ξ ξ 2 2⎡ ⎤= − +⎣ ⎦  

(when 0kξ → , the value of Ik approaches that of rigid block, i.e. 2 23 3kI MH MB→ + ). 
 
2.3. Equivalent modal mass and direction  
 
Now let’s consider the equivalent single degree of freedom (SDOF) system for each mode. In an uplifting 
phase, each mode must have the equivalent modal mass and direction because two dimensional motions are 
caused, while the equivalent direction in full contact phase is just horizontal. To define the equivalent mass 
and direction, momentum and energy of the equivalent SDOF system should be set to be equal to those of 
each mode with respect to θk.  

hk k kS M H= ,  v kS M Bk= ,  ( )2
k k k kI M H B= + 2                     (2.7a,b,c)
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where ( ) ( )21 cos coshk k k k kS A Z dx MHρ ξ ξ ξ≡ = −∫ (when 0kξ → , 2hkS MH→ ), 2vS MB≡ , Mk is the 

equivalent (or effective) mass for mode k, Hk and Bk are the height and width of the equivalent SDOF system  
respectively as illustrated in figure 5(a). The symbol φk represents the direction of mode k, 

(1tank vS Sφ −= )hk . Note that the sum of Mk is equal to 7M/4 because the sum of vertical total mass 
decomposed into the modal equations is 3M/4 due to the assumption that the section is rigid. The relationships 
between Mk and the ordinary equivalent modal masses for horizontal Mhk and vertical Mvk of mode k are,  
 

2coshk k kM M φ= ,  2sinvk k kM M φ=                                 (2.8a,b)
 
Figure 6 is a vector type representation of the equivalent mass – spring systems illustrated in figure 5(b). The 
length and the direction of the vector represent the ratio of the equivalent mass Mk/M and direction φk. In this 
figure, we set 0<φk <π. If the structure rocks around the left edge of the base (i.e. θ < 0), the figure changes 
into the symmetric one with respect to the y-axis of the graph. The first, rigid mode has the mass of 3M /4, 
and its direction is perpendicular to the line connecting the right edge of the base and the center of the mass. 
The third mode has the direction about π/2. For an uplift phase even if the ground motions stop, the modes 
having relatively large equivalent mass and the direction about ±π/2 can be well oscillated around the static 
equilibrium state because the gravity acts vertically and suddenly just after the lift-off as a step function. But 
the contributions of those modes to base shear response are little as shown later. 
Figure 7 shows the relationships between the structural parameter H/B and the equivalent modal properties. 
For slender structures, the third and higher modes still have the equivalent mass of about 0.5M at the 
maximum. The absolute value of directional angles of the first and the second modes are nearly equal to or 
less than 45 degrees, while those of the third and higher modes reaches about 90 degrees at the maximum. 
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Figure 5 Equivalent SDOF system          Figure 6 Vector type representation of the equivalent 
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Figure 7 Equivalent modal mass and direction  
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3. INITIAL VELOCITY ANALYSIS 
 
To grasp the general properties of dynamic behavior of rocking motion accompanied by uplift, initial velocity 
analysis is carried out utilizing the modal equations. Suppose that the system initially at rest on the ground is 
subjected to the impulsive horizontal forces having the same distribution shape along the height as that of the 
first mode in full contact phase (i.e. fixed base condition). The system begins to vibrate only in the first mode. 
If the system oscillates enough, the base of the structure begins to rock accompanied by uplift motion when 
the overturning moment reaches the resisting moment due to gravity, MgB/2. The analysis is conducted 
between the instant of time of initiation of uplift and that of landing, that is, the first excursion or half cycle of 
uplifting behavior. As a basic study, ground motions and damping of the system are neglected. 
 
3.1. Equations of motion 
 
We can express the horizontal displacement y(x, t) and rotation θ (t) by superimposing the modal responses, 
i.e. y(x, t) = ∑Zj(x)θ j(t) and θ (t)=∑θ j(t). Substituting these equation into Eqn.2.1 and 2.2, adding the effect of 
gravity –sgn(θ)ρAdxgB/2 to the right-hand side of Eqn. 2.2, integrating the both Eqns. over the height after 
multiplying Eqn. 2.1 by Zk(x), adding the results together, the equation of motion for mode k can be derived 
as, 
 

( )2 sgnk k k k k vI p I Sθ θ θ+ = − g                                       (3.1)

where g is gravitational acceleration. Let us introduce dimensionless time τ = pf1t, rigid component of 
horizontal displacement at the top δk = Hθk and dimensionless pseudo acceleration (Meek, 1978) ak = pf1

2δk /g. 
Eqn. 3.1 can be changed to, 
 

( )
22

2
1

sgnk k v
k

f k

d a S Ha
Id

ξ
θ

ξτ

⎛ ⎞
+ = −⎜ ⎟⎜ ⎟

⎝ ⎠
                                   (3.2)

 
The analytical solutions of Eqn. 3.2 can be found easily.  
For the representation of the results in the next section, we assume t =τ =0 at the instant of initiation of uplift 
and θ >0 after lift-off. Initial conditions of modes for an uplift phase can be derived using the orthogonal 
properties of modes with θ(0) =0 and (dθ/dτ)τ = 0 =0. Up to 10 modes are used to calculate the responses.  
 
3.2. Time histories and modal contributions 
 
Figure 8 shows an example of time histories of responses during the first uplifting excursion with the modal 
contributions. Note that the input level of impulsive forces is appropriately measured by the base shear 
coefficient under fixed base condition, CBf. In the case of the figure, we assume CBf =0.6 and H/B=4. 
Horizontal displacement at the top and rotation due to uplift (a = ∑ aj) are represented as dimensionless 
pseudo accelerations. It should be noted that the rotations in the second and the higher modes are minus 
almost all the time during uplift, whereas that of the first, rigid body mode is plus. So we can recognize an 
uplift behavior as the sum of largely uplifting response of the first mode and vibrations of higher modes 
accompanied with slight sinking. From the point of view of utilizing transient uplift motion for reduction of 
seismic response to absorb the vibration energy as potential energy of self weight, the first mode is effective, 
but higher modes have to absorb a part of potential energy of self weight as their strain energy. This is the 
main reason why the effect of higher modes is well observed during uplift (e.g. Ishihara et al. 2007). From the 
figure 8(a) and (b), horizontal displacement and rotation due to uplift are dominated mainly by the first, rigid 
body mode. On the other hand, base shear coefficient CB, overturning moment coefficient Cm and strain 
energy We are affected by higher modes while the first mode has no effect on these responses because of the 
rigid body mode. Note that the overturning moment coefficient Cm is defined as movt/(MgH/2), where movt is 



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 
overturning moment calculated by integrating the moment Qdx of the segment over the height. The 
phenomena are due to the modal properties for an uplifting phase as described in the preceding chapter. For 
example, the third mode’s contribution to the base shear is little because of its modal direction. Figure 8(f) 
shows the potential energy of self weight Wp as a fraction of total energy Eall. In this case, 87% of total energy 
was stored temporally as the potential energy of self weight, while the maximum strain energy is only 29%. 
Figure 9 shows an example of the dynamic load – displacement relationships under the same condition in 
figure 8. Higher modes’ behaviors during uplift make the curves relatively complicated. 
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Figure 8 Time histories and modal contribution (H/B=4, CBf = 0.6) 
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Figure 9 Dynamic load – displacement relationship (H/B=4, CBf = 0.6) 
 
3.3. Reduction effect due to uplift 
 
Figure 10 summarizes the maximum responses to show the reduction effect owing to uplift. Thick and thin 
lines show the maximum and minimum responses respectively. The figure also shows the range of input level 
where the overturning moment always remains plus during the incipient uplift excursion, that is, the right 
edge keeps on touching with the ground. The two degrees of freedom version corresponding to figure 10(a) 
can be found in the literature (Meek, 1975). By allowing uplift, the maximum base shear, overturning moment 
and strain energy are significantly reduced, especially in slender structures. For example, under the input level 
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of CBf = 0.8, the maximum base shears of the structures of H/B=3, 4 and 6 are reduced to 0.55, 0.44 and 0.40 
of the total weight respectively. The maximum strain energy as a fraction of total energy is less than 30% 
under the condition of H/B ≥ 4 and CBf ≥ 0.6. 
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Figure 10 Reduction effect due to uplift 
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Figure 11 Story shear coefficient 
 
Figure 11 shows the maximum story shear coefficient C(x) along the height. Dashed lines show those of fixed 
base structures vibrating only in its first mode. Story shears including the base shear are increased with the 
input level, particularly in the upper part. For slender structures, story shear is reduced in the lower part of the 
structure, but increased in the upper part. Allowing uplift changes the distribution of story shear force 
coefficient along the height into somewhat top heavy one. Similar tendency was also found in the results of 
analytical and experimental studies of discrete mass systems (Ishihara et al., 2006a, 2007). This tendency can 
be recognized as the natural consequence of the properties and behaviors of higher modes during uplift. 
 
4. CONCLUSIONS 
 
In this paper, uniform shear-beam model is used as a representation of multi-story buildings allowed to uplift. 
The modal properties and dynamic behaviors during an uplift excursion are clarified by defining the 
equivalent single degree of freedom system of each mode and conducting the initial velocity analysis as the 
sum of modal responses to be able to calculate analytically. From the results, the conclusions are summarized 
as follows:  
(1) For slender structures, higher modes during uplift can still have relatively large equivalent modal masses 
of about half of the total mass at the maximum, and their modal directions can be close to vertical. These 
properties of higher modes cause relatively complicated responses during uplift. 
(2) Transient uplifting behavior can be decomposed into largely uplifting response of the first, rigid body 
mode and vibrations of higher modes accompanied with slight sinking.  
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(3) Higher modes have to absorb a part of potential energy of self weight as their strain energy. This is the 
main reason why higher mode effect is well observed during uplift. 
(4) Top and uplift displacements are dominated mainly by the first, rigid body mode. On the other hand, 
stresses in the structure are caused by higher modes. 
(5) Higher modes during transient uplift motion change the shape of distribution of shear forces along the 
height into somewhat top heavy one. 
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APPENDIX 
 
The typical values of dimensionless frequencies ξj are listed in table A.1. 
 

Table A.1 Dimensionless frequencies 
H/B ξ1 ξ2 ξ3 ξ4 ξ5 

1 0 2.204 4.745 7.860 10.998 
2 0 3.352 4.911 7.884 11.006 
3 0 4.131 5.578 7.948 11.021 
4 0 4.350 6.697 8.160 11.054 
5 0 4.415 7.392 8.923 11.132 
6 0 4.444 7.579 10.029 11.402 
7 0 4.459 7.640 10.613 12.273 

 




