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ABSTRACT : 

During a large earthquake, traditional seismic lateral resisting systems can experience significant damage 
distributed throughout the structural system, and residual drifts that make it difficult, if not financially
unreasonable, to repair. A controlled rocking system has been devised which virtually eliminates residual drifts
and concentrates the majority of structural damage in replaceable fuse elements. The controlled rocking system 
consists of three major components: 1) a stiff steel braced frame that remains virtually elastic, but is not tied
down to the foundation and thus allowed to rock, 2) vertical post-tensioning strands that anchor the top of the 
frame down to the foundation, which brings the frame back to center, and 3) replaceable structural fuses that
absorb seismic energy as the frames rock. This paper describes preliminary results from a half-scale test 
conducted at the University of Illinois at Urbana-Champaign. The experimental hysteretic response is compared 
to predictions made with a two-dimensional analytical model. The controlled rocking system exhibited
excellent self-centering properties, and effectively concentrated the energy dissipation and structural damage in
the replaceable fuse elements. 
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1. INTRODUCTION  
 
1.1. Need for the Controlled Rocking System 
As structural engineers look toward performance based design as a way to quantify performance expectations 
and thereby enable owners to choose a desired level of performance, it becomes important for engineers to have 
higher performance systems to offer. Traditional seismic force resisting systems will often experience inelastic 
action throughout the structure during a large earthquake, which results in residual drifts and distributed damage 
that is difficult and costly to repair. Clients concerned about repairability after an earthquake, will want a 
structure that concentrates seismic damage in replaceable elements and one that does not exhibit residual drifts 
after an earthquake. 
 
1.2 Self-Centering Systems for Steel Framed Buildings 
Seismic force resisting systems that have the ability to absorb energy and also return to their original 
configuration after an earthquake are not common in steel-framed buildings. Several approaches, however, are 
being studied at institutions in the United States, Canada, Italy, Japan, Taiwan, and elsewhere. The approaches 
to self-centering a steel frame can be grouped into several categories. Self-centering braces have been designed 
and built using prestressed aramid fiber strands in conjunction with friction pads (Christopoulos et al. 2008), or 
shape memory alloys (Dolce and Cardone 2006; Zhu and Zhang 2008). Self-centering moment frames 
developed at Lehigh University (Ricles et al. 2001) and the University of California at San Diego 
(Christopoulos et al. 2002) consist of horizontally oriented post-tensioned bars or strands that hold a beam flush 
to a column until earthquake motions cause the beam to rotate relative to the column. Energy dissipation is 
implemented using yielding seat angles, friction dampers, or energy dissipating bars confined in tubes. Japanese 
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researchers have investigated self-centering column bases that use post-tensioned bars (Ikenaga et al. 2006) or 
spring loaded wedges (Takamatsu et al. 2006). (Pekcan et al. 2000) studied a system with draped post-tensioned 
tendons with a non-rocking steel frame. The tendons spanned over multiple bays and multiple floors and used 
elastomeric spring dampers and fuse bars to provide energy dissipation. 
 
Rocking of steel structures has been studied in a number of forms. Researchers in Japan have shown that 
yielding base plates that allow some uplift while dissipating energy can reduce the seismic response of moment 
frames and braced frames (Azuhata et al. 2006). Some researchers have implemented these yielding base plates 
at multiple locations along the height of braced frame columns (Wada et al. 2001). 
 
U.S. and Taiwanese researchers have studied rocking of bridge piers (Pollino and Bruneau 2004; Chen et al. 
2006). U.S. researchers used buckling restrained braces to dissipate seismic energy whereas the Taiwanese 
researchers studied free rocking. In both cases, gravity loads alone were relied upon for self-centering forces to 
overcome energy dissipation sources such as buckling restrained braces. In contrast to bridge systems, rocking 
frames for buildings rarely have enough gravity load for self-centering. 
 
1.3 The Controlled Rocking System 
With the goal to develop a seismic lateral resisting system for new construction that has post-earthquake 
self-centering ability and concentration of damage in replaceable elements, the steel braced-frame with 
controlled rocking system was developed. Figure 1 highlights one possible configuration of this system, which 
employs the following components: 
  

1. Steel frames that remain essentially elastic and are allowed to rock about the column bases. As shown in 
Figure 1, the specially designed column base details permit column uplift and restrain horizontal motion 
by bumpers or an armored foundation trough. The configuration in Figure 1 uses two side-by-side 
frames, though alternative configurations with single frames are possible.  

2. Vertical post-tensioning strands provide active self-centering forces. The strands are initially stressed to 
less than half of their ultimate strength, so as to permit additional elastic straining when the frames rock. 
The configuration in Figure 1 employs post-tensioning down the center of the frame; other 
configurations with strands oriented on the column lines are also feasible. 

3. Replaceable energy dissipating elements act as structural fuses that yield, effectively limiting the forces 
imposed on the rest of the structure. In Figure 1, the fuses are configured as yielding shear elements 
between the two frames. Other configurations include fuses at the column bases or in inelastic vertical 
anchors. A number of different types of shear fuses were tested. 

 
The controlled rocking system has a flag-shaped hysteretic response that is characteristic of self-centering 
systems. As shown in the left plot of Figure 2, the post-tensioning force creates a bilinear elastic response in the 
rocking frame, as the corner of the frame is allowed to uplift. As shown in the center plot, the fuse can be 
idealized as an elasto-plastic element with full hysteresis loops. The effect of combining the two elements is the 
flag-shaped hystersis loop shown on the right of Figure 2. 
 
This paper briefly summarizes some of the early phases of this project, including tests on a range of fuse 
topologies to determine optimum fuse performance, and the results of the first of a number of half-scale system 
tests being conducted to test the complete structural system. In 2009, a series of two-dimensional, two-thirds 
scale shake table tests will then be conducted on the system at the E-Defense shake table facility in Miki, Japan. 
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Figure 1 Controlled Rocking System (Left) and the Analytical Model Created In OpenSees (Right) 
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Figure 2 Schematic Depiction of the Controlled Rocking Hysteretic Response 

 
2. TESTING PROGRAM  
 
2.1 Fuse Tests 
One of the key elements of the controlled rocking system is the replaceable energy dissipating fuse. The 
controlled rocking configuration shown in this paper utilizes a shear fuse panel. A testing program was 
conducted at Stanford University to design, test, optimize, and characterize replaceable shear fuse elements. 
Tested fuses employed high performance fiber reinforced cementitious composites, engineered cementitious 
composites, steel plates with straight slits, and steel plates with butterfly cut-outs. Eleven tests were conducted 
on fuses that represent approximately half-scale relative to the prototype building. 
 
Through the course of the fuse testing program, fuse designs were optimized based on previous test experience. 
Figure 3 shows one of the tested fuses along with the resulting response. As demonstrated in the plot of the steel 
butterfly plate response, energy dissipating hysteresis loops can be obtained up to and exceeding shear strains of 
25%. The fuse plate shown in Figure 3 is ¼” thick with seven tapered links designed to yield in bending at the 
quarter points before buckling and switching to more tension dominated response. The fuse plates are A36 steel 
and were cut using commercially available water jet technology. 
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Figure 3 Undeformed Fuse (Left), Fuse at 23% Shear Strain (Middle), and Fuse Hysteretic Response (Right) 

 
2.2 Half-Scale Quasi-Static System Tests  
There are numerous goals for the experimental program conducted at the University of Illinois at 
Urbana-Champaign on half-scale specimens of the structural system including: 1) validate the system response, 
and examine fuse, post-tensioning, and rocking performance as part of the controlled rocking system; 2) 
investigate and improve details not common to steel structures such as rocking column bases and 
post-tensioning; 3) study force distributions in frame members, and changes in those distributions as damage 
progresses in the fuses; 4) provide detailed data for calibrating computational models; and 5) validate the repair 
and replacement characteristics of the system, as the same frames and post-tensioning will be reused in multiple 
tests. 
 
A prototype three-story building was designed using controlled rocking frames assuming an arbitrary site in 
California and R=8. The test setup shown in Figure 4 represents an approximately half-scale version of the 
prototype frames, which is the first of eight tests that vary the primary system design variables including 
geometry, initial post-tension force, and fuse shear strength. The thickness and link geometry of the fuses are 
comparable to the one tested in an early phase of this work as shown in Figure 3. Struts were used above and 
below the fuses to help stabilize the columns when the fuses started to impose large tension forces on the 
columns. To accomplish the goals discussed above, extensive instrumentation, including strain gages, linear 
potentiometers, string potentiometers, LVDT’s, load cells, inclinometers, and the Krypton 3D measurement 
system was used to monitor the deformations, strains, and loads experienced during the test.  Still image 
photographs were taken at frequent intervals during the tests, and the experiment was videotaped using both 
high-speed and low-speed video. 
 
The Loading and Boundary Condition Box (LBCB) at the UIUC NEES MUST-SIM facility was used to apply 
two-dimensional loading to the specimen while holding the out-of-plane displacement degrees of freedom 
constant. Two 7” diameter load cell pins transferred load from the LBCB into the two rocking frames (see 
Figure 4). The test control was designed to constrain the vertical load from the load cell pins to be zero in 
addition to directly controlling the horizontal string potentiometer readings at the roof level of the frames. The 
roof drift was controlled to follow a quasi-static cyclic displacement history designed to produce shear strains in 
the fuses equal to the targets outlined in Appendix S Loading Sequence for Link-to-Column Connections of the 
AISC Seismic Provisions (AISC, 2005). Figure 5 shows the roof drift ratio as well as the target fuse shear 
strains. 
 
Figure 6 shows the geometry and member sizes of the controlled rocking frame specimen. Wide flange shapes 
were used in minor axis orientation as beams, columns, and braces, with gusset plates on the front and the back 
of the frame; it is intended that yielding in the frames be minimal during the tests. Eight standard ASTM A416 
½” diameter post-tensioning strands were used in each frame and were stressed to an initial pretension of 
approximately 30% of the strand ultimate strength. Fuses were cut from ¼” thick A36 steel plate with a yield 
strength of 38 ksi. Fuse links were ¾” wide at the center and taper to 2-1/4” wide at the ends. 
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Figure 5 Displacement History Executed in Test A1 

 
 
2.3 Computational Model of the Half-Scale Specimen 
A two-dimensional frame model was created using the OpenSees Software to predict the response of the test 
specimen shown in Figure 4. Figure 6 shows a schematic representation of the computational model. Rocking 
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motion at the base was simulated through springs that have high vertical stiffness in compression and zero 
stiffness in tension.  Similarly, the elements representing the post-tensioning strands were modeled as 
pre-strained tension-only elements. The fuses were discretized using a component model that simulates the 
combined shear, moment, and tension experienced in the fuse during loading to large deformations. Rotational 
springs capture the plastic hinges that form in the fuse links while a hysteretic axial member captures the link’s 
tension behavior after buckling. Frame members are designed to remain elastic and are thus modelled as elastic 
beam-column elements. The analysis and element formulation utilizes a large-displacement (co-rotational) 
formulation with nodal coordinate updating.  
 

  
Figure 6 Schematic Representation of the OpenSees Analytical Model (Left) and Specimen Geometry (Right) 

 
3. COMPARISON OF EXPERIMENTAL AND ANALYTICAL SYSTEM RESPONSE 
 
Both the analytical model and the half-scale specimen were subjected to the displacement history shown in 
Figure 5. The hysteretic response of both are shown in Figure 7. Some observations include: 
 

• The controlled rocking system demonstrated excellent energy dissipation coupled with self-centering 
characteristics. The residual drift was at most 0.2%. The residual drift that did exist was largely due to 
the tolerances used in between the bumpers and in the pin connections, and the residual drifts further 
reduced later in the loading history after the fuses had yielded inelastically. The fuses attained sustained 
cyclic shear strains of approximately 11%, less than one-half their anticipated ductility capacity, but 
sufficient to subject the system to more than 3% interstory drift. 

• Differences are noted between the experimental response and the response predicted by the preliminary 
analytical model. The following reasons for the differences will be addressed in future analytical 
models: 

o The analytical model does not yet include strain hardening in the fuse elements; ancillary 
tests of the fuse materials exhibit significant strain hardening. 

o The analytical model does not yet fully capture the buckling of fuse links. 
o The tolerances between the bumpers and the frames were not included in the analytical 

model. 
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o The tolerances in the pin connections of the struts between the frames and the pin load cells 
were not included in the analytical model. 

• The base rocking connections worked as planned in that there were no significant inelastic 
deformations. 

• The vertical post-tensioning details successfully transferred the self-centering forces. There was some 
loss in post-tensioning force after the loading protocol because of seating loss. This will be investigated 
further to determine methods for mitigating this effect.  
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  Figure 7 Comparison of the Experimental Results and the Preliminary Analytical Model 

 
4. CONCLUSIONS 
Traditional seismic resisting systems that rely on inelastic action in structural elements can result in residual 
drifts and distributed structural damage that is difficult and expensive to repair. A proposed alternative to this 
are self-centering rocking frame systems with replaceable fuses that are relatively easy to repair after an 
earthquake. The steel-braced frame controlled rocking system presented in this paper was shown to virtually 
eliminate residual drifts while concentrating structural damage in replaceable fuse elements. Computational and 
experimental studies have been carried out to identify and examine key design variables and demonstrate the 
viability of the system. The results described herein are preliminary and additional experimental and analytical 
investigation is forthcoming.  
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