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ABSTRACT : 
This paper presents a new analytical model for elastomeric seismic isolation bearings. Elastomeric isolation 
bearings exhibit stiffening or buckling behavior influenced by the applied compressive stress under large shear 
deformations. The isolator properties depend on the interaction between the horizontal and vertical forces on the 
isolator. A new analytical model has been developed to predict the behavior of elastomeric isolators under high 
vertical loads and large shear deformations. The model includes the interaction between horizontal and vertical 
forces as well as the nonlinear hysteresis characteristics of elastomeric isolators at large shear deformations. The 
model captures isolator behavior due to varying vertical load, which is a necessary feature to accurately predict 
the influence of building overturning on isolation system response in an earthquake. To validate the model, 
simulation analyses of cyclic shear tests of lead-rubber bearings under constant and varying vertical load and 
cyclic shear deformations were conducted. The hysteresis loops obtained from the tests under constant 
compressive stress exhibited shear stiffening behavior for low compressive stress, with deterioration of 
horizontal stiffness under high compressive stress. The varying vertical load test hysteresis loops were not 
symmetric, rather they showed both stiffening behavior and a deterioration of horizontal stiffness depend on the 
level of vertical load. These test results show that compressive load strongly influences the shape of the shear 
hysteresis loops. The results of the analyses using the new model show very good agreement with both the 
constant and varying vertical load experimental results. 
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1. INTRODUCTION 
 
Seismic isolation is the most effective technology for protecting structures from the damaging effects of 
earthquakes. It has been extensively used worldwide over the last three decades. The widespread use of seismic 
isolation has necessitated better understanding of some of the more complex aspects of isolation device behavior, 
such as under large shear deformations or high compressive stresses. Elastomeric isolation bearings exhibit 
stiffening or buckling behavior, influenced by the imposed compressive stress at large shear deformations. The 
change in shear stiffness due to high compressive stress is an important behavior to consider for elastomeric 
bearings when isolated buildings experience extreme earthquake shaking. The properties of seismic isolation 
devices depend upon the interaction between shear and vertical forces acting on the isolator. The actual 
hysteretic behavior of an isolation bearing under a structure subjected to severe earthquake shaking is influenced 
by the variation of vertical load on the isolator due to overturning forces. In addition to the shear-axial 
interaction, elastomeric isolation bearings exhibit nonlinear behavior at large shear displacements. To predict 
the response of isolated structures under large bearing shear displacements, an analytical method that accounts 
for both nonlinear bearing behavior in large shear deformations and the effect of varying vertical load on 
bearing properties is needed. In this paper, a new analytical model for elastomeric bearings with these 
capabilities is proposed. The new model includes the interaction between shear and axial forces as a function of 



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 
varying vertical load on a bearing during earthquake loading. 
 
 
2. A NEW MECHANICAL MODEL FOR ELASTOMERIC BEARINGS 
 
Figure 1 shows the proposed new mechanical model to incorporate interaction between shear and axial forces as 
a function of varying vertical load. The model is developed based on the geometrical relationships of the 
Koh-Kelly model [1]. The model comprises shear and axial springs, and two series of axial springs at the top 
and bottom boundaries. Each spring in the series of axial springs represents an individual strip of the bearing 
cross-sectional area. The rigid columns, which represent the height of the bearing, are combined between the 
series of axial springs and the mid-height shear and the axial springs. Each spring in the model is a uniaxial, 
nonlinear spring. When this collection of springs is combined in the model, the nonlinear, interaction behavior is 
achieved. The nodes, a, m, n and b, in Figure 1 are the points where the components of the mechanical model 
inter-connect. The nodes, a and b, have displacements in three directions (horizontal, vertical and rotational) and 
the nodes, m and n, have displacements in two directions (vertical and rotational). The node pairs a and m, and b 
and n, are spatially coincident. The horizontal displacements of the nodes, m and n, are equal to those of the 
nodes, a and b, respectively. The forces and displacements on the model are also shown in Figure 1. 
 
As the incremental forces on nodes a and m are the sums of the incremental restoring forces on the series of 
axial springs between a and m, the force-displacement relationship on nodes a and m may be written as follows: 
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where iKNa is the stiffness of the i-th axial spring located between nodes a and m, and ila is the length between 
the i-th spring and the center of the series of axial springs, which represents the distance from the centroid of the 
i-th strip to the center of the cross-sectional area of the bearing. The incremental vertical force and bending 
moment on nodes n and b are the sums of restoring forces on the series of axial springs between n and b. The 
force-displacement relationship on nodes n and b may be also written in the same way as Eqn. 2.1. 
 
Taking the geometrical relationships of the deformations, the force-equilibrium condition and P-Δ effect into 
account gives the force-displacement relationship on the interior nodes, m and n: 
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Figure 1 Multi-spring mechanical model 
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where KS, KN and KR are the stiffnesses of the mid-height shear, axial and rotational springs, respectively. The 
rotational spring at the mid-height of the model (which is not shown in Figure 1) is a supplementary element 
which provides rotational flexibility at the mid-height and gives the new model the ability of handling various 
distributions of bending moment. The present development assumes that KR is infinity. The overall stiffness 
matrix for an elastomeric bearing, Kab, is obtained by arranging the elements of the partial stiffness matrices in 
Eqn. 2.1 and Eqn. 2.2 into a single 10× 10 matrix: 
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3. HYSTERESIS MODELS 
 
In order to predict the large-deformation behavior of elastomeric bearings, nonlinear hysteresis relationships are 
used for the springs in the new mechanical model. In this section, new hysteresis relationships for the shear and 
axial springs of the model are developed. 
 
3.1 Shear Spring 
Two of the authors previously developed a hysteresis model for the shear deformation of elastomeric isolation 
bearings that is capable of predicting the behavior of high-damping rubber bearings under large shear 
deformations [2]. A modification of this earlier model is made to extend its applicability to lead-rubber bearings. 
Figure 2 (a) shows the modified hysteresis model for the shear deformation of lead-rubber bearings.  
 
3.2 Axial Springs 
The new mechanical model has two kinds of axial springs, a series of axial springs at the top and the bottom 
boundaries, and an axial spring at mid-height. In the present work it is assumed that the series of springs at the 
top and bottom represent the axial properties of the bearings, and the stiffness of the mid-height axial spring is 
assumed infinite. Figure 2 (b) shows the stress-strain relationship for the top and bottom series of axial springs. 
The stress-strain (σ - ε) relationship consists of the following four loading states: 
(1) Loading and unloading in the elastic region (o-a-b): 
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where E0 is Young’s modulus of the rubber, κ is a constant related to rubber hardness, S1 is the rubber layer 
shape factor and E∞  is the bulk modulus of the rubber. 
(2) Loading after tension “yielding” (b-c): 
 

 ( )y y yE= + −σ σ ε ε                                       (3.3) 
 



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 
 

 
 

1
500y initE E=                                           (3.4) 

        y init yE=σ ε                                               (3.5) 
 
where σy and εy are the stress and strain, respectively, of the tension yield point. A value of 1.0 MPa is used for 
the tension yield stress. 
(3) Unloading after tension “yielding” (c-d-a): 
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where σr and εr are the stress and strain of the most recent point of load reversal, and σl and εl are the stress and 
strain of the target point during unloading after tension yielding. 
(4) Loading after compression “yielding” (a-e): 
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where σC and εC are the stress and strain, respectively, of the compression yield point. A value of 100 MPa is 
used for σC. When re-loading occurs, even after the compression yield point has been passed, the modulus is 
still Einit. The stiffness of each axial spring in the series of axial springs, iKNA, is calculated from Eqn. 3.11: 
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where iE is Young’s modulus of each spring in the series of axial springs, which is obtained by referring to the 
hysteresis model, and iAdiv is the area of each divided part. 
 
 

(a) Shear hysteresis model (b) Axial stress-strain behavior for top 
and bottom series of springs 

Figure 2 Shear and axial hysteresis models 
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4. BEARING TESTS AND SIMULATION ANALYSES 
 
Bearing tests were conducted to verify the new analytical model. Two types of cyclic shear tests of lead-rubber 
bearings were performed. The first were cyclic shear tests with constant vertical loads and the second were 
cyclic shear tests with varying vertical loads. 
 
4.1 Constant Vertical Load Tests 
The bearing tested is shown in Figure 3(a). S2 = 5 bearing is used for the cyclic shear tests with constant vertical 
loads. The tests consisted of sinusoidal horizontal displacement-controlled loading, with four fully-reversed 
cycles of loading at shear strain amplitudes of 50, 100, 200, 300 and 400 %. The loading velocity was 1.5 cm/s. 
Vertical load on the bearing was maintained constant during each test, and tests were performed at compressive 
stresses of σ = 0, 5, 10, 20 and 30 MPa. The hysteresis loops obtained from the cyclic shear tests of the 
lead-rubber bearing under constant compressive stresses of 0, 10 and 30 MPa are shown in Figure 4. The 
bearing exhibited obvious shear stiffening behavior beyond approximately 300 % shear strain at low axial 
stresses of 0 and 10 MPa. However, the bearing exhibited significant negative stiffness for a stress of 30 MPa. 
The results show that compressive stress strongly influences the shear hysteretic behavior of the lead-rubber 
bearing design tested. 
 
Simulation analyses of the tests were conducted to validate the proposed mechanical model and the spring 
hysteresis models. The following material properties were used for the analyses: Young’s modulus of rubber, E0 

= 1.44 MPa, bulk modulus of rubber, E∞ = 1960 MPa, and the constant related to rubber hardness, κ = 0.85. 
Figure 5 shows the hysteresis loops predicted by the analytical model for the same loading histories and 
compressive stress as the experimental hysteresis loops shown in Figure 4. Comparing Figures 4 and 5, the 
experimental and analytical results show good agreement under all three levels of compressive stress. The 
results show that the proposed model can accurately predict complex nonlinear behaviors for lead-rubber 
bearings under large deformations, as a function of the imposed axial stress on bearing. 
 
4.2 Varying Vertical Load Tests 
An advantage of the proposed model is its capability to predict a variety of force-displacement relationships for 
an isolation bearing with a single model of the bearing. To confirm this capability, cyclic shear tests of 
lead-rubber bearings under varying vertical load were conducted. The bearings tested are shown in Figure 3. 
Two types of bearing, S2 = 5 bearing and S2 = 4 bearing, were used for the cyclic shear tests with varying 
vertical loads. The tests of the S2 = 5 bearing comprised cyclic shear tests with the vertical load varying (during 
shear cycling) between 0 and 30 MPa, and the tests of the S2 = 4 bearing comprised cyclic shear tests with the 
vertical load varying (during shear cycling) between 0 and 20 MPa. The shear and axial loading histories for  
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both bearing types are shown in Figure 6. The hysteresis loops obtained from the tests are shown in Figure 7. 
These loops are not symmetric, rather they show both shear stiffening behavior and a deterioration of horizontal 
stiffness depending upon the level of vertical load on the bearing. 
 
Figure 8 shows the hysteresis loops predicted by the analytical model for the same shear and axial loading 
histories as the experimental hysteresis loops shown in Figure 7. The analytical results for both the S2 = 5 and 4 
bearings show very good agreement with the experimental results (Figure 7). This agreement demonstrates that 
the proposed model can accurately predict the influence of varying vertical loads on these types of elastomeric 
isolation bearings.  
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Figure 4 Experimental shear hysteresis loops for cyclic shear tests of lead-rubber bearing (S2 = 5)  
with constant vertical loads 
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Figure 5 Analytical shear hysteresis loops for lead-rubber bearing cyclic shear loading 
with constant vertical loads 
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Figure 6 Loading histories for combined shear and varying vertical load tests 
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5. CONCLUSIONS 
 
A new analytical model for elastomeric seismic isolation bearings is proposed to more accurately predict the 
large displacement response of isolated buildings. The proposed model includes the interaction between shear 
and axial forces, nonlinear hysteresis and dependence on varying vertical load. The hysteresis models for the 
shear spring and the series of axial springs in the new model were developed separately to appropriately 
represent the large deformation behaviors of elastomeric bearings. Cyclic shear tests of a lead-rubber bearing 
under constant vertical load were performed as part of the development of the new model. The lead-rubber 
bearing tested exhibited stiffening or buckling behavior influenced by axial stress under large deformations. 
Through comparison with the test results, the new model is shown to successfully predict a variety of complex 
bearing force-displacement relationships under a wide range of vertical load conditions. Cyclic shear tests under 
varying vertical load were performed to assess the influence of varying vertical load on bearing hysteretic 
behavior. The hysteresis loops obtained from the tests were not symmetric and showed both stiffening and 
deteriorating shear stiffness, due to the varying vertical load. The analytical results given by the new model 
show very good agreement with actual bearing test results. The capabilities that have been demonstrated for the 
new model make it a useful tool for the more accurate dynamic analysis in which it is desired to include the 
effect of varying vertical load on isolation bearings during severe earthquake loading. 
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