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ABSTRACT : 

In this study, it has been aimed to develop an algorithm that determines failure mechanisms and ductility
capacities of 3D frames under earthquake loads with three components and a computer program which
performs dynamic analysis according to this algorithm. The proposed analysis accounts for material, geometric
and connection nonlinearities. Material nonlinearity have been modeled by the Ramberg-Osgood relation.
While the geometric nonlinearity caused by axial force has been described by the use of the geometric stiffness 
matrix, the nonlinearity caused by the interaction between the axial force and bending moment has been also
described by the use of the stability functions. The independent hardening model given by Kishi and Chen has
been used to describe the nonlinear behaviour of semi-rigid connections. 
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1. INTRODUCTION 
 
Advanced analyses for two dimensional steel frames with semi-rigid connection are carried out by Kishi and 
Chen (1990) and Barsan and Chiorean (1999). Second-order inelastic analysis for space steel frames with rigid
connections are proposed by Orbison et al. (1982), Kim et al. (2001) and Kim et al. (2006). The stability functions 
are used to capture the second-order effects to minimize modeling and solution time. The nonlinear analysis for
the space steel frames with semi-rigid connections is developed by Kim and Choi (2001). These solution methods 
incorporate geometric and material nonlinearities and the nonlinearity caused by the presence of flexible joints
under static loads. A second-order spread-of-plasticity analysis method for three dimensional steel frames is
performed by Jiang et al. (2002). Although the plastic zone solution is known as the “exact solution”, it is not be 
used in daily engineering design because of its highly computational cost. 
 
In this study, the section of members is assumed to be compact which can develop full plastic moment capacity
without local buckling. The reduction of torsional stiffness is considered in plastic hinge. Warping torsion is
ignored. Lateral torsional buckling of members is assumed to be prevented by adequate lateral braces. Bowing
effect is considered. 
 
2. MATERIAL NONLINEARITY 
 
Material nonlinearity is modeled by using the concentrated plastic hinge approach. Plastic hinges are formed
when the cross-sectional forces satisfy the plasticity criterion, which is expressed by a force-space interaction 
function. For steel beam-columns with compact I-shaped sections, the plastic interaction functions proposed by
Morris and Fenves (1969) are used as shown in Fig. 1. Yield surface expressions for the I-shaped cross-section 
are formulated with respect to a various position of the neutral axis (Morris and Fenves 1969). These expressions 
were preferred instead of approximate equations for wide-flange I sections, because the expressions below are 
valid not only for wide-flange but also for all types of I sections. 
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Figure 1 Full plastification surface 

 
p = P / Py, the ratio of the axial force to the squash load; mx = Mx / Mxp, the ratio of the strong axis bending 
moment to the corresponding plastic moment; my = My / Myp, the ratio of the weak axis bending moment to the 
corresponding plastic moment; t = T / Tp, the ratio of the torsional moment to the plastic torsional moment. 
 
2.1. Elasto-Plastic Tangent Stiffness Matrix 
 
The stress-strain relations for nolinear material behaviour is modelled by following equation which corresponds 
essentially to the inverse of the Ramberg-Osgood representation. 
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where σ and ε are normal stress and strain, E is Young’s modulus, σu is the ultimate stress and n is constant 
defining shape of stress-strain relationship. The response in torsion and shear is assumed linearly elastic. The
moment-effective rotation relationship proposed by Goldberg and Richard (1963) for each bending directions x 
and y and axial force-axial deformation relationship is expressed in the same form as the stress-strain equation. 
 
The incremental force-displacement equation may be written for the three-dimensional elasto-plastic 
beam-column element as, 
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where M and φ are bending moment and the corresponding rotation; P and ∆L are axial force and axial 
deformation; T and θT are torsional moment and torsional rotation; A, Ix, Iy and L are area, moment of inertia with 
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respect to x and y axis, and length of beam-column element; E, G and J are elastic modulus, shear modulus and 
torsional constant of material; g, d, h, p and s appearing in the tangent stiffness matrix are the elasto-plastic 
correction factors (Uzgider 1980); )sp/(ps2r1 += , )dh/(hd2r2 += . These variables are defined to modify 
the member stiffness at the each time increment. 
 
3. GEOMETRIC NONLINEARITY 
 
While the geometric nonlinearity of frame (P-∆) caused by axial force has been described by the use of the
geometric stiffness matrix, the nonlinearity of member (P-δ) caused by the interaction between the axial force 
and bending moment has been also described by the use of the stability functions (Kim et al. 2001). 
 
The element geometric stiffness matrix is composed of the changes in nodal forces due to second order effects 
(P-∆) of axial nodal forces in case of rigid body rotation of the frame element. 
 
Stability functions are used to capture the second-order effects since they can account for the stiffness
degradation caused by the interaction effect between the axial force and bending moments. S1 is stability 
function for the effect of flexure on axial stiffness (bowing effect). S2, S3, S4 and S5 are stability functions for the
effect of axial force on flexural stiffness with respect to x and y axes, respectively (Ekhande et al. 1989). The 
force-displacement equation using stability functions may be written for the three-dimensional elasto-plastic 
beam-column element as 
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4. SEMI-RIGID CONNECTION MODELING 
 
In this study, the independent hardening model is used to simulate the nonlinear connection behaviour under
dynamic loading, as presented by Sekulovic et al. (2002). The moment-rotation curve under the first cycle of 
loading, unloading and reverse loading remain unchanged under the repetition of loading cycles. The skeleton 
curve used in the model is obtained from the three-parameter power model proposed by Kishi and Chen (1990).
 
The three parameter power model contains three parameters: initial connection stiffness Rki, ultimate connection 
moment capacity Mu and shape parameter n. To determine the three parameters for given connection type,
practical procedures proposed by Kishi and Chen (1990) are used. Type of semi-rigid connection that is 
considered herein is the top and seat angle with double web-angle connection (TSDWA). 
 
A beam-column element with semi-rigid connections is shown in Fig. 2. The flexible connections are
represented by rotational springs at beam ends. The connection spring element is assumed massless and 
dimensionless in size. Rxi, Ryi, Rxj and Ryj are tangent stiffness of the connections at the i and j ends of the 
beam-column element in the x-x and y-y direction, respectively. Values of Rxi, Ryi, Rxj and Ryj are to be obtained 
from the independent hardening model. 
 
The element tangent stiffness matrix represented by Eqn. 3.1 is modified to account for the effect of the 
semi-rigid connections in a beam-column element. 
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Figure 2 Beam-column element with semi-rigid connection 

 
5. NUMERICAL PROCEDURES 
 
The incremental form of the equation of motion for frames subjected to dynamic is given by 
 

 PxKxCxM ∆∆∆∆ =⋅+⋅+⋅ &&&  (5.1) 
 
In which K  is the tangent stiffness matrix for the system of structural elements; M  is the mass matrix; 

KMC βα +=  is the viscous damping matrix, where α  and β are mass and stiffness proportional damping 
factors, respectively; x&&∆ , x&∆ , x∆  and P∆ are incremental acceleration, velocity, displacement and
externally applied force vectors, respectively, over a time increment of ∆t. 
 
The equations of motions are integrated using step-by-step integration, with a constant acceleration assumption
within any step (Kim et al. 2006). The dynamic equilibrium of the system in terms of the unknown incremental
nodal displacement x∆  can be expressed as 
 

 











++ CMK

tt
1

2

1
2

2 ∆δ
δ

∆δ
x∆ = P∆ + 








+ C M 

2

1

2 t
1

δ
δ

∆δ
x& t+ 








− C)(+ M 1

2
t

2
1

2

1

2 δ
δ∆

δ
x&& t (5.2) 

 
where δ1 and δ2 are parameters that can be determined to obtain integration accuracy and stability; x& t and x&& t

are total velocity and acceleration vectors at time t. The constant-average-acceleration method, in which δ1 = ½
and δ2 = ¼, has the most desirable accuracy characteristics. 
 
When the incremental displacement ∆x at time t+∆t in the Eqn. 5.2 is solved, it is used to update the 
acceleration, the velocity, the displacement and the force vectors. This procedure is repeated for the next time
increments until the considered frame system collapses or the desired duration in the time history is reached. 
 
6. ENERGY RESPONSE EVALUATION 
 
The input energy in the system due to seismic loading, dissipated energy by the hysteretic behaviour of the
material at the location of plastic hinges, if they form, by viscous damping and by hysteretic behaviour of the 
semi-rigid connections, elastic strain energy and kinetic energy have been described as 
 

 )t(E)t(E)t(E)t(E)t(E KDisDEI +++=  (6.1) 
 
where EI(t) is seismic input energy, EE(t) is elastic strain energy, ED(t) is damping energy, EDis(t) is dissipiate energy 
and EK(t) is kinetic energy. As presented by Sekulovic and Nefovska-Danilovic (2008), these energy terms are 
expressed as follows: 
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where Ke and xe are the elastic stiffness matrix and elastic displacement vector, dx is incremental displacement
vector, x  and x&  are total displacement and velocity vectors at time t, II is the matrix that matches the 
earthquake acceleration components to the corresponding nodal degrees of freedom. 
 
7. ESTIMATION OF DUCTILITY DEMANDS 
 
The estimation of the ductility demands under seismic loading conditions and the prediction of ductility 
capacity have become an important subject in the design of structures. The ductility demands may be 
determined from the inelastic analysis of the structures (Lee et al. 1997). 
 
Rotational ductility is defined by the ratio of the maximum rotation θmax at the end of a member to the yield 
rotation θy as follows, 
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The system level ductility is defined by the ratio of the maximum system displacement umax to the yield 
displacement uy as, 
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8. NUMERICAL EXAMPLE 
 
For the numerical example, three-dimensional steel frames presented by Kim et al. (2006) are used. The 
earthquake records with three components of the San Fernando 1971 (station: Pacoima Dam) are used 
as ground motion input data in the present study. The mass and stiffness proportional damping factors are
chosen corresponding to 5% viscous damping ratio. In numerical modeling, each member of the space frames is 
only modeled by one element. The results of the linear analysis of the numerical examples with rigid joints
obtained by this study have been compared with the corresponding results obtained by the commercial finite
element analysis software SAP2000. It can be seen that the two sets of results are very close. 
 
8.1. Two-story One-bay Space Frame 
 
The geometric properties and other pertinent information of this frame with lumped masses at the nodes are
given in Fig. 3. The static gravitational loads are applied at all frame nodes to demonstrate the second-order 
effects in a clear manner. All sections are H125x125x6.5x9. 
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Figure 3 Two-story one-bay space frame 
 
The displacement responses along x-axis of node A of the frame with semi-rigid connection and rigid jointed 
frame according linear and second-order elastoplastic analyses are shown in Fig. 4. 
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Figure 4 Displacement response (xA) of two story frame according to the (a) elastic analyses and  
(b) inelastic analyses 

 
The inelastic behaviour of the framed structure for the second-order elastoplastic analysis case under San 
Fernando earthquake can be seen that the column end moments in the frame almost reach the column moment
capacity, therefore plastic hinges form. The locations of plastic hinges are shown in Fig. 5. 
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Figure 5 The locations of plastic hinges of two story frame subjected to San Fernando earthquake (a) rigid 
connections, (b) semi-rigid connections 
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The hysteretic moment-rotation loops at node B where the member begins to yield and the hysteretic connection 
loop at node C are shown in Fig. 6, respectively. 
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Figure 6 The hysteretic loops (a) at point B and (b) at point C 
 
The based shear force-roof displacement relationships along X-axis and Y-axis of the rigid jointed frame obtained
by proposed computer program are shown in Fig. 7, respectively. The system-level ductility demands estimated 
by the force-displacement relationships are shown in Table 8.1 along with maximum local ductility demands. 
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Figure 7 Force-displacement relationships (a) along X-axis and (b) along Y-axis 
 

Table 8.1 Rotational ductility demands and system ductility demands 
Ductility demands of frame with 

rigid connections 
Ductility demands of frame with 

semi-rigid connections 
Rotational Ductility System Ductility Rotational Ductility System Ductility 

Member Id. Member Id. 
1 2 3 4 

Along 
X-axis 

Along 
Y-axis 1 2 3 4 

Along 
X-axis 

Along 
Y-axis 

13.6 13.9 13.7 13.7 3.36 1.53 5.14 3.75 3.74 5.22 2.51 1.46 
 
Results of the energy response of the frame with rigid and semi-rigid connections is shown in Fig. 8. Viscous 
damping energy constitutes 65% of input energy, while dissipated energy constitutes 30% of input energy for the
frame with semi-rigid joints. For the frame with rigid joints, while viscous damping energy rises up to 74% of
input energy, the ratio for dissipated energy decreases to 20%. 

a b 

a b 
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Figure 8 Energy response of two story frame with (a) rigid connections and (b) semi-rigid connections 
 
9. CONCLUSION 
 
In this study, an effective algorithm for second-order elastoplastic dynamic time-history analysis of three 
dimensional steel frames has been presented. The system-level ductility demands of the multistory steel
structures are found to be about 1/4∼1/2 of those for the element-level. The results of energy responses show 
that semi-rigid connections increase the overall structural energy dissipation capacity, which is very important
for a structure to overcome under earthquake induced seismic loads. 
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