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ABSTRACT : 

Response of unreinforced masonry (URM) to out-of-plane excitation is a complex, yet inadequately 
addressed theme in seismic analysis. Seismic input expected on a face-loaded wall in an URM 
building is the ground excitation filtered by the in-plane response of the walls and the floor diaphragm 
response. The dynamic response, i.e., the superposition of vibration modes of the primary lateral 
load-resisting structure, and the non-linear structural response contribute to the filtering phenomenon. 
The current paper summarises an investigation aimed at developing a semi-analytical formulation to 
estimate the acceleration demand on a face-loaded URM wall or a generic secondary system, that 
explicitly takes into account the level of inelastic demand on the primary structure, in terms of the 
displacement ductility demand. The proposed formulation is based on statistical evaluation of several 
non-linear dynamic time-history analysis results treated within a parametric framework. 
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1. INTRODUCTION  

Out-of-plane collapse of peripheral walls is a recurring failure mechanism in existing URM buildings, 
structures that were not built in conformity with any code but rather to a builder’s rules of the art. 
Modern seismic codes for design of new masonry buildings, on the other hand, provide dimensioning 
and detailing rules that make out-of-plane failure almost unlikely even under severe seismic load (e.g. 
limits on slenderness ratio for walls). Lack of structural detailing (e.g. presence of efficient floor-wall 
ties, adequately rigid diaphragms) renders such building stock, ubiquitous in urban historical nuclei, 
highly susceptible to out-of-plane failure even under low intensities of ground motion. 
 
Out-of-plane response to seismic excitation, especially under ultimate conditions, is associated with 
displacement demand rather than attainment of static out-of-plane strength capacity. This concept, 
originally purported by Priestley (1985), was ratified in recent years by theoretical and experimental 
research (e.g. Doherty et al., 2002, etc.). A first step towards looking at this complex problem needs to 
envisage evaluation of the actual seismic demand on walls by considering the dynamic filtering effect 
of the building and its diaphragms and the dynamic response of the walls. Non-linear behaviour of the 
primary lateral load-resisting structure can alter the response of the face-loaded wall either by 
significantly reducing or substantially amplifying its response compared to that under the linear 
regime. Interactions between the response of the primary structure and face-loaded walls can be fully 
investigated only by means of inelastic dynamic time-history analysis (THA). 
 
In the current research, the effect of the inelastic response of the primary structure on the seismic input 
to face-loaded walls is investigated. The semi-analytical formulation proposed based on statistical 
evaluation of results of inelastic THA treated within a parametric framework, explicitly accounts for 
the inelastic response of the primary structure. Within the context of the dynamic filtering effect of 
buildings on the seismic input to face-loaded walls, a parallel can be drawn with seismic forces 
transmitted to secondary systems in a building. A secondary system could be a non-structural 
component (NSC) within, attached to, or supported by the structure but not included in the design of 
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primary structure (e.g. face-loaded walls, parapets, equipment, etc.). Most procedures available to 
compute the seismic demand on face-loaded walls have to be derived from code-based methods to 
estimate seismic demand on NSCs (e.g. CEN-EN-1998, 2005), a fact rarely stated explicitly in codes. 
 
Bulk of the research effort on response of secondary systems has essentially focussed on estimating 
elastic floor spectra from linear response of primary and secondary systems, based on random 
dynamics approaches. A limited number of studies in the literature explore the effects of non-linear 
structural response on secondary system response (e.g. Lin and Mahin, 1985; Sewell et al., 1986; 
Miranda and Taghavi, 2005; Ray Chaudhuri and Villaverde, 2008; etc.) and far fewer have come up 
with recommendations incorporating the phenomenon in simple analytical or semi-empirical formulae 
to estimate the seismic demand on secondary systems (e.g. Villaverde, 1997; Rodriguez et al., 2002; 
Ray Chaudhuri and Hutchinson, 2004, etc.). Current code-based approaches take into account the 
resonance effect, the height effect and ductility in the secondary system (e.g. CEN-EN-1998, 2005), 
and with the exception of the New Zealand Standard (NZS 1170.5, 2004), none of the others reviewed 
in the current research accounts for the inelastic behaviour in the primary structure. 

2. METHODOLOGY ADOPTED  

The parametric inelastic THA is carried out by means of uncoupled seismic analyses (neglecting 
feedback effect between the primary and secondary systems) of an elastic SDOF secondary system 
upon a non-linear SDOF primary system. As the focus here is on out-of-plane response of URM walls, 
neglecting coupling effects is acceptable given that the mass ratios (mass of the secondary system to 
the mass of the primary system) are generally less than one percent. The numerical analyses and the 
proposed formulation are based on SDOF idealisation of the primary system, implying that the 
non-linear response affects only the first mode of vibration of the structure represented. The 
assumption may be valid for 3-4 storied URM structures, however, due importance to higher mode 
effects on secondary system response has to be accorded in taller and more flexible structures. In 
URM walls, initiation of cracking can be related to an acceleration-sensitive limit state, whereas, the 
ultimate limit state is definitely displacement-sensitive. Therefore the seismic demand on face-loaded 
walls is investigated in the current study in terms accelerations as a first approach. 
 
The seismic demand expected on a face-loaded wall is defined by means of a semi-analytical 
formulation that explicitly considers the inelastic response of the primary system in terms of 
displacement ductility demand, a quantify which can eventually be related to a structural behaviour 
factor (e.g. Fajfar, 1999). The following factors have been treated within the parametric inelastic THA: 

1. Initial period of vibration of the primary lateral load-resisting structure (T1) 
2. Level of displacement ductility demand (μΔ) on the primary structure 
3. Hysteretic model of the primary structure (modified-Takeda, elastic-perfectly-plastic (EPP), 

masonry shear-dominated hystereses) 
4. Nature of excitation signal used for the THA (natural vs. synthetic records) 
5. Spectral response shape of the seismic input (stiff soil vs. soft soil spectrum) 

3. PARAMETRIC STUDY 

The SDOF oscillator representing the primary structure is modelled as a frame element with strength, 
geometrical characteristics and axial loading calibrated to ensure a shear-controlled failure mode, and 
to represent the shear-dominated global response of URM buildings. The base shear capacity ratios 
(maximum base shear to weight ratio) ranged between 0.17-0.36 with an average of 0.25 for the 17 
oscillators, broadly indicative of the global strengths of URM buildings with moderate to high seismic 
vulnerability. T1 varied between 0.04-1.0s, representing an ample spectrum of elastic vibration periods 
of URM buildings. The target displacement ductility demands varied from 0.40 and 0.75 (elastic 
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response) to 1.5, 2, 2.5, 3 and 4 (inelastic), with μΔ defined as the ratio of the maximum oscillator 
displacement to the yield displacement. The hysteretic laws modelling inelastic oscillator response 
(primary structure) were a modified-Takeda (Otani, 1974), a masonry shear-dominated (Lagomarsino 
et al., 2006) and the EPP hystereses (see Figure 1). Inelastic THA analyses were executed using 
numerical codes RUAUMOKO (Carr, 2005) and TREMURI (Lagomarsino et al., 2006). 
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Figure 1:Hysteresis response of the SDOF oscillator representing the primary system using (left) 
modified-Takeda; (centre) masonry shear-dominated; (right) EPP hysteretic rules 
 
The inelastic THA were carried out using a suite of 10 natural ground motion records compatible with 
a soil type-B (Vs,30 > 800m/s) elastic response spectrum (CEN-EN-1998, 2005). A suite of 10 artificial 
records compatible with the soil type-B response spectrum and a suite of 15 natural records 
compatible with a soil type-D (Vs,30 < 180m/s) elastic response spectrum (CEN-EN-1998, 2005) were 
used concurrently within the parametric study to evaluate the effects of characteristics of the natural 
records (used in the current study) and that of a different input spectral shape on the dynamic filtering. 
Acceleration records were individually scaled in amplitude so as to achieve target levels of μΔ. 
Existing relationships between  μΔ and the ductility reduction factor (Fajfar, 1999) were used to 
estimate appropriate scale factors required to take the oscillators to preset levels of μΔ. Further details 
of the parametric study are discussed elsewhere (Menon and Magenes, 2008). 
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Figure 2: Acceleration transfer function for a flexible primary structure under inelastic response 

 
Influence of the inelastic response of the primary system on the seismic input to face-loaded walls is 
evaluated in terms of “transfer functions”. The transfer function is an analytical representation of the 
modification of secondary system response by the dynamic filtering effect, calculated as the ratio of 
the spectral acceleration on the secondary system (elastic response spectrum ordinates estimated from 
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absolute floor acceleration response) to the spectral acceleration at the initial period of the oscillator 
(elastic or inelastic response spectrum ordinate from input ground acceleration). 
 
In rigid primary structures, the floor acceleration response spectrum is almost identical to the ground 
acceleration response spectrum. Contrarily, the floor or secondary system response in flexible 
structures is severely affected by the primary system’s response and the dynamic filtering effect. The 
floor spectrum is differently shaped from that of the ground response spectrum and shows response 
amplification confined to a narrow band of vibration periods centred on T1 due to the resonance effect. 
Features of the acceleration transfer function for ductile response of a flexible primary structure are 
illustrated in Figure 2. Under inelastic structural response, the amplification of response is no longer 
confined to a narrow band around T1 but extends rightwards beyond T1, to longer periods. This is 
coherent with the concept of period elongation due to inelastic response of the primary structure. 
 
The acceleration transfer functions for different oscillators for all levels of target  μΔ (EL: elastic; IN-1: 
μΔ 1.5; IN-2: μΔ 2.0; IN-3: μΔ 2.5; IN-4: μΔ 3.0; IN-5: μΔ 4.0) are shown in Figure 3. Effect of the 
inelastic structural response in reducing the secondary system response with increasing μΔ is 
significant for moderately-rigid and flexible oscillators. Peak floor accelerations consistently reduce 
with increasing μΔ for all oscillators. Acceleration demands on out-of-plane walls tend to marginally 
increase with increasing μΔ for period ratios (T/T1) beyond approximately 1.5. 
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Figure 3: Acceleration transfer functions for all target  μΔ for oscillators M1 (T1=0.04s), M4 (T1=0.12s), 
M6 (T1=0.23s), M10 (T1=0.48s), M14 (T1=0.72s) and M17 (T1=0.95s). 
 
Emergence of a second amplification zone, to the right of the main peak at resonance (T=T1), was 
noticed in moderately-rigid and flexible oscillators with increasing μΔ and subsequent period 
elongation in the oscillator. Time-frequency analysis of response acceleration histories obtained from 
inelastic THA to identify an effective post-yield period of vibration for each oscillator and subsequent 
logarithmic regression have enabled development of a semi-empirical correlation between the 
effective inelastic period and μΔ (see Figure 4, Eqn. 3.1). For a generic idealised force-displacement 
relationship within a secant stiffness approach, at peak displacement, such an effective inelastic period 
is directly proportional to the square root of μΔ. Eqn. 3.1 is used within the proposed formulation to 
capture the phenomenon of the emergence of the second peak. k is a coefficient dependent on the 
logarithm of the displacement ductility demand. 
 

Δμ∗= kTTeff 1 where ( ) 00.1ln192.0 +−= Δμk  (3.1)
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Figure 4: (L) Semi-empirical equation relating the period ratio (Teff/T1) to μΔ obtained by regression 
analysis of inelastic THA (each point represents average of 10 THA); (R) Secant stiffness approach 

4. SEMI-ANALYTICAL FORMULATION  

The seismic demand on the face-loaded wall (or a generic secondary element) is calculated in terms of 
spectral acceleration (Eqn. 4.1). The proposed expression is constituted by the ground motion 
component, the elastic dynamic filtering component and the inelastic dynamic filtering component, 
which are combined using the ductility dependent proportionality coefficients C, DT1 and DTeff, 
respectively. In Eqn. 4.1, Sae,o(T) is the spectral acceleration relative to wall period, T; Sae,i(T) is the 
ordinate of the input elastic response spectrum at the wall period; Sa,i(T1) is the ordinate of the input 
isoductile response spectrum at the initial structural period, T1 and Sa,i(Teff) is the ordinate of the input 
isoductile spectrum at the effective inelastic period, Teff. 
 

( ) ( ){ } ( ) ( ){ } ( ) ( ){ }
effTeffhareffiaThariaiaeoae DTTTFTSDTTTFTSCTSTS **** ,11,,, 1

++∗=  (4.1)
 
Coefficient C, which varies exponentially with T1, is defined by Eqn. 4.2 using the ductility-dependent 
coefficient A and constant x, the latter implying a residual contribution from the ground motion 
component to the floor or secondary system response under elastic and inelastic structural response. 
 

( ) 2
1*1 ATexxC −−+=  x = 0.05 (elastic); 0.10 (inelastic) (4.2)

 
The harmonic functions (TFhar) in Eqn. 4.1 are defined by Eqn. 4.3 (or 4.5) and Eqn. 4.4 (or 4.6) for 
elastic and inelastic structural responses, respectively. Coefficients α, a and β are also 
ductility-dependent, while ξ is the damping ratio (0.05). 
 

( ) ( )( ) ( )2
1

2
11 11 TTTTTTTFhar βζα +−=  for T/T1 ≤ 1.0 (4.3)

( ) ( )( ) ( )22
11 effeffeffhar TTTTTTTF βζα +−=  for T/Teff ≤ 1.0 (4.4)

( ) ( )( ) ( )2
1

2
11 11 TTTTTTTF a

har βζ+−=  for T/T1 > 1.0 (4.5)

( ) ( )( ) ( )22
11 eff

a
effeffhar TTTTTTTF βζ+−=  for T/Teff > 1.0 (4.6)

 
Coefficients α, a and β together with the proportionality coefficients (A, DT1, DTeff) have been 
estimated by calibrating the analytical predictions to the average spectra of 10 THA using the set of 
stiff soil natural records for each oscillator represented by the modified-Takeda hysteresis and for each 
observed μΔ class. Values of these coefficients prescribed for different μΔ classes are reported in Table 
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1. For very rigid primary structures (T1 ≤ 0.05s) under inelastic response, DTeff, may be ignored and 
DT1 can be assumed as 0.05. For T1 0.05-0.15s, DT1 can be assumed to be varying linearly between 
0.05 and the value reported in Table 1 for a given ductility class. Similarly, DTeff may be assumed to 
vary from 0.05 to the corresponding value reported. For elastic structural response, DT1, can be 
assumed to vary linearly from 0.05-0.95 for oscillator periods 0.05-0.15s. 
 

Table 1: Prescribed values for coefficients A, DT1, DTeff, α, a, β 

TFhar (T1) TFhar (Teff) Ductility 
Class 

Observed 
Ductility1 α a β α a β 

DT1
2 DTeff

2 A 

Elastic - 1.80 0.85 3.75 - - - 0.95 - 15
I. 1.00-1.50 1.40 1.50 0.65 3.70 1.00 0.50 2.00 0.90 0.05 25
II. 1.50-2.00 1.71 1.40 0.65 3.70 1.00 0.45 2.00 0.88 0.08 30
III. 2.00-2.50 2.13 1.30 0.50 3.70 1.00 0.40 2.00 0.85 0.10 35
IV. 2.50-3.00 2.74 1.30 0.45 3.70 1.00 0.40 2.00 0.78 0.12 40
V. 3.00-4.00 3.49 1.20 0.40 4.00 1.00 0.33 2.00 0.74 0.15 45

1 average observed ductility demands from THA results for the ductility class 
2 values applicable to T1 > 0.15s for inelastic cases

 
In comparison to numerical results, the formulation adequately estimates the spectral acceleration on 
the secondary system up to a secondary system period of 2.0s, with a margin of error consistently 
lower than 20% (see Fig. 5). It efficiently covers secondary systems attached to rigid and flexible 
structures, both under elastic and inelastic structural response. The expression tends to overestimate 
beyond a secondary system period of 2.0s, which however is beyond the practical range of interest. 
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Figure 5: Comparison of acceleration demands computed using the proposed expression with THA 
results for different oscillators under elastic and ductile response (ductility classes – refer Table 1) 
 
The simplicity of the expression lies in the number and type of parameters needed to calculate the 
seismic demand whilst the format makes it consistent with response spectrum definitions in current 
codes. Elastic and/or isoductile acceleration response spectra of the ground motion are required along 
with initial elastic structural period. Once the level of ductility demand on the structure is known, or 
chosen, Teff is easily calculated (Eqn. 3.1), while rest of the coefficients are prescribed here. A generic 
floor spectrum can be derived, or alternatively, knowing the secondary system’s vibration period (T), 
the corresponding spectral acceleration can be directly estimated. 
 
The expression captures the physical sense of the filtering effect in URM buildings concisely. Seismic 
demand on a secondary system attached to a rigid structure comes mainly from the ground motion 
component, while the dynamic filtering component diminishes and the floor spectrum tends to that of 
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the ground motion. Conversely, as the structure becomes more flexible, the role of the dynamic 
filtering component increases with a parallel reduction of the ground motion component. Under purely 
elastic structural response, the dynamic filtering component is constituted only by the elastic 
component and the inelastic counterpart is zero, whereas as the inelastic structural response increases, 
the proportion of the latter increases with a concurrent reduction in the former. 
 

 
4-storied URM building, fundamental period of vibration, T1, 0.30s, 

Normalised first mode shape: φ1 = [0, 0.31, 0.63, 0.87, 1.0]T, μΔ = 2.0
Range of wall periods, T = 0.0-2.0s, PGA = 0.22g, 

STEP 1: Estimation of effective inelastic period,Teff, and period ratios T/T1 and T/Teff

Δ∗= μk
T

Teff

1
( ) 00.1ln192.0 +−= Δμkwhere ( ){ }{ } sTeff 368.030.0*0.200.10.2ln192.0 =∗+−=
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Figure 6: (a) Procedure for estimating floor acceleration demands in an example 4-storied URM 
building, shown in (b) and (c) floor acceleration spectra for floors 1-4 of the URM building 
 
The seismic demand given by the proposed formulation pertains to an equivalent SDOF model of a 
URM building. A possible application of the formulation to estimate floor spectra of individual floors 
of an URM building, based on a generalised SDOF system approach, would involve the 
transformation of the floor demand relative to the SDOF system to the peak response of the building 
using the modal participation factor Γ (see Fig. 6). The peak response is then coupled with the 
normalised first mode shape of the structure to estimate the acceleration floor spectra pertaining to the 
respective floors. If the acceleration demand on walls, especially in the lower floors, is lower than the 
peak ground acceleration (PGA), a conservative approach would be to use the PGA directly as the 

(a) 

(b) 

(c) 
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demand on such walls. The procedure described here could be valid for 3-4 storied URM buildings, 
but neglecting higher mode contributions may not be acceptable for taller and more flexible structures. 

5. CONCLUDING REMARKS  

The current paper proposes a semi-analytical formulation to estimate acceleration demands on an 
out-of-plane URM wall (or a generic secondary system) by explicitly accounting for the inelastic 
response of the primary structure. The formulation is based on statistical evaluation of results of 
inelastic dynamic THA executed within a parametric framework on an SDOF-on-SDOF 
primary-secondary system, neglecting higher mode contributions. A possible application of the 
proposed expression in estimating the floor acceleration spectra of 3-4 storied URM buildings, up to a 
wall period of 2.0s is described. The proposed expression is applicable not only within assessment 
methods for existing URM buildings but also as a design check in new constructions. 
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