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ABSTRACT :  

Seismic design of extended pile-shafts requires a consideration of the influence of the surrounding soil on the 
overall response of the soil-pile system. A procedure for seismic design of extended pile-shafts for bridge 
structures is presented in this paper. The design methodology follows the displacement-based design philosophy, 
where a target displacement is specified as the basis for design to ensure good performance. The procedure is 
capable of incorporating soil effects into the design process so that the influence of soil stiffness and strength on 
the seismic response of the structure can be accounted for. The design procedure involves an iterative process to 
arrive the required amount of longitudinal reinforcement. Other outcomes of the design include the stiffness and 
strength of the structure and the local curvature ductility demand. The versatility of the procedure is illustrated 
using a numerical example, which shows that reliable design results can be obtained for a wide range of 
structural and soil properties. The proposed procedure is relatively straightforward to implement and is deemed 
useful for performance-based seismic design. 
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1. INTRODUCTION  
 
A cost effective design for bridge substructures involves the use of column/pile-shaft combination, often called 
the extended pile-shaft. The supporting column is continued below the ground level as a cast-in-drilled-hole pile, 
as shown in Figure 1(a), until the member reaches a depth where the vertical load bearing capacity is adequately
developed. For this type of structures, the overall seismic response is characterized by an increased flexibility 
due to the compliance of the soil. The increased flexibility poses a special challenge in design as the large lateral 
displacement may lead to significant inelastic deformation in the pile-shaft with potential for unacceptable 
damage of the structure below ground. In order to minimize the severity of the damage in the pile-shaft, the level 
of the seismic displacement imposed on the structure needs to be carefully controlled. Thus, for proper design of
extended pile-shafts, the influence of surrounding soil on the overall performance of the structure must be taken 
into account judiciously. 
 
In this paper, a procedure for seismic design of extended pile-shafts is presented. The procedure follows the 
displacement-based design philosophy, where a target displacement is specified as the basis for design to ensure the 
satisfactory performance of the structure (Priestley et al. 2007). The stiffness and strength of the pile-shaft are not 
direct design variables but are outcomes, among other results, of the design. A secant stiffness, instead of the initial 
stiffness, of the pile-shaft is used to characterize the seismic response of the structure. The design procedure is 
developed on the basis of the analytical model presented in Song and Chai (2008). The procedure incorporates soil 
properties into the design process so that the influences of soil stiffness and strength on the vibrational period and 
lateral displacement of the structure are considered. It is shown that the design procedure is relatively 
straightforward to implement, but more importantly, is deemed useful for performance-based seismic design. The 
versatility of the procedure is illustrated using a numerical example, which shows that reliable results can be 
obtained for a wide range of structural and soil properties 
 
 
2. METHODOLOGY 
 
The proposed design procedure is suitable for multi-span bridges with individual bents supported on concrete
pile-shafts that are restrained from rotation at the pile-head. The structure is assumed to have a fairly uniform 
distribution of strength and stiffness between bents so that seismic response of the structure may be characterized 
by the response of a single bridge bent modeled as a single-degree-of-freedom system under the transverse load.
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Figure 1 (a) The soil-pile system of a bridge bent supported on extended pile-shafts and (b) its lateral load-

displacement relation 
 
 
The bridge is assumed to be located in a high seismic risk zone so that inelastic response of the structure must be 
considered under the design level earthquakes. The inelastic load-displacement response of the pile-shaft can be 
approximated to a tri-linear curve, as shown in Figure 1(b), with the initial elastic stiffness K1, followed by a 
reduced stiffness K2, due to the development of the first plastic hinge at pile/bent-cap interface, and then by a fully 
plastic mechanism after the formation of the second plastic hinge below the ground level. In displacement-based 
design, the inelastic single-degree-of-freedom system is substituted by an equivalent elastic system having an
effective stiffness Keff equals to the secant stiffness, which is defined by the stiffness from the origin to the ultimate 
displacement ∆u, as also illustrated in Figure 1(b) (Priestley et al. 2007).  
 
The design task at hand is to determine the amount of reinforcement for a given level of seismic demand and site 
condition. The design process involves nonlinear solutions and successive iterations. The following soil and 
structure parameters are assumed to be known at the beginning of the design process: Structural properties: The 
above-ground height La is known since the need to provide traffic clearance frequently dictates the above-ground
height of the structure. The number of columns per bridge bent is assumed to be determined a priori. The seismic 
mass m tributary to each pile-shaft is obtained from the summation of the mass of two adjacent half spans of the 
superstructure and the mass of the bent-cap divided by the number of columns per bent. The material properties such 
as the Young’s modulus E and compressive strength f’c of concrete and the yield strength of the reinforcement fy are 
also assumed to be known. Soil properties: In this design procedure, the soil is broadly divided into cohesive and 
cohesionless soils, assumed to be characterized by the undrained shear strength su and effective friction angle φ , 
respectively. For cohesive soils, the modulus of horizontal subgrade reaction kh, which is commonly assumed to 
be constant with respect to the depth, can be estimated as kh = 67su (Davison 1970). For cohesionless soils, the 
rate of increase of modulus of horizontal subgrade reaction nh can be estimated using the effective friction angle
φ  (ATC-32 1996). It is further assumed that liquefaction will not occur at the site under the design level 
earthquake. Note that the undrained shear strength or friction angle affects the site response, which means the 
selected design spectrum must be compatible with the soil properties.   
 
Step 1 – Select a trial diameter D. The trial diameter D can be selected on the basis of the aspect ratio, typically in 
the range of 2≤ La / D ≤ 8. The selected diameter, however, should result in an axial stress level that is within the 
nominal axial stress range for reinforced concrete bridge columns, i.e. 0.05≤ mg/(f ’ c Ag)≤ 0.15, where mg is the 
gravity compression tributary to the pile-shaft and 42 /DAg π=  is the gross sectional area. 
 
Step 2 – Establish the target displacement ∆∆∆∆u. Seismic performance of a structure depends on the level of 
inelastic deformation that is developed locally in the critical sections, which in turn depends on the displacement or 
drift ratio imposed on the structure. For extended pile-shafts, a good seismic performance can be ensured
conservatively by limiting the inelastic deformation of the second plastic hinge to within the limiting strain for 
serviceability so that post-earthquake repair below the ground level can be avoided. The limiting serviceability 
strain can be selected from the strain limits (in the plastic hinge) proposed by Priestley et al. (2007) for different
performance limit states. In this paper, the target displacement ∆u is specified using the ultimate drift ratio γu, i.e.: 

 ( )mauu LL +×γ=∆  (2.1)                             

(b) (a) 
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where La is the above-ground height of the pile-shaft and Lm is the depth to the second plastic hinge. The ultimate 
drift ratio γu, determined using the serviceability strain limits of Priestley et al. (2007), is shown in Figure 2 for 
cohesive and cohesionless soils. It should be noted that the depth to the second plastic hinge mL  in Eqn. 2.1
depends on the ultimate strength of the pile, among other factors, and may not be accurately calculated until the 
design solution has converged. To start the design process, the following preliminary estimation of the depth to the 
second plastic hinge Lm for soil profiles SE, SD and SC, as defined by NEHRP (2001), may be used: 
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where *

mL  is the normalized depth to the second hinge, and *
aL = La / D is the normalized above-ground height.  

 

     
 
Figure 2 The ultimate drift ratio γu defined using the serviceability limit strain in the second plastic hinge for 

pile-shafts embedded in (a) cohesive soils and (b) cohesionless soils  
 
 

Step 3 – Select a displacement ductility factor µµµµ∆∆∆∆ and obtain the equivalent damping ratio ξξξξeq. As noted earlier, 
an iterative process is needed for the proposed displacement-based design to arrive at the required amount of 
longitudinal reinforcement for the pile-shaft. The process can be facilitated by iterating on the displacement ductility 
factor µ∆ until convergence of the solution. As an initial guess, a value of µ∆ = 3, corresponding to the displacement 
ductility limit recommended implicitly by ATC-32(1996), may be used. The design procedure then requires an 
estimation of the equivalent damping ratio ξeq at the displacement ductility level considered. The equivalent damping
ratio is conventionally taken as the combination of the elastic damping ratio ξel and the hysteretic damping ratio ξhyst

under the inelastic response. For reinforced concrete structures, the elastic damping ratio is commonly taken as ξel = 
5%. Equations relating the equivalent damping ratio to the displacement ductility factor for pile-shafts in medium 
sands and soft clays are available in Priestley et al. (2007). These equations indicate that the equivalent damping
ratio increases with increasing displacement ductility factor. The rate of increase of the equivalent damping ratio 
reduces at large displacement ductility factors, and eventually the equivalent damping ratio tends to be at a constant 
level. However, a preliminary study of hysteretic damping ratio ξhyst using the experiment data of isolated extended 
pile-shafts by Chai and Hutchinson (2002) shows that the hysteretic damping increases linearly with increasing 
displacement ductility factor. Correlations between the hysteretic damping ratio and the displacement ductility 
factor, as extracted from the experiment results of Chai and Hutchinson (2002), are shown in Figure 3. Although the 
experiment result and its influence on hysteretic damping is insightful, it is nonetheless limited to only one soil type
and one pile diameter and does not constitute broad enough basis for establishing the equivalent damping for the 
wide range of structural and soil properties expected in practice. To complete the displacement-based design 
procedure in this paper, equations given by Priestley et al. (2007) will be used, but it is recognized that refined 
expressions for equivalent damping ratio upon future research can be readily incorporated into the procedure.  

Step 4 – Determine the effective period Teff, effective stiffness Keff and lateral strength Vu. Upon knowing the 
target displacement ∆u and the equivalent damping ratio ξeq, the effective period Teff of the equivalent elastic system can 
be estimated using the displacement spectra for various damping ratios. The effective stiffness Keff is then obtained by  

(b) (a) 
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Figure 3 Correlations between the hysteretic damping ratio and the displacement ductility factor using the 

experiment results of Chai and Hutchinson (2002)  
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where m is the seismic mass per pile-shaft. The ultimate lateral strength Vu can be then determined using the 
equivalent elastic system shown in Figure 1(b), i.e.: 
 

 ueffu KV ∆×=  (2.4) 
  
Step 5 – Determine the depth to the second plastic hinge Lm and the flexural strength Mu. The ultimate lateral 
force Vu from step 4 is used to determine the depth to the second plastic hinge Lm, which is in turn related to the 
flexural strength of the pile and depends on the soil type, which means the depth to the second plastic hinge and 
the flexural strength must be evaluated separately for cohesive and cohesionless soils. For cohesive soils, the 
depth to the second plastic hinge, expressed in a normalized form of *

mL = Lm /D, is given by the solution of  
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where ≡*

uV Vu / (su D
2) is the normalized lateral strength and D is the diameter of the pile-shaft. The coefficient 

( )uur s.D'/s 506 +γ≡ψ  is the critical depth coefficient for a pile embedded in cohesive soils, where su and 'γ
are the undrained shear strength and the effective unit weight of the soil, respectively. It is worth noting that for 
soft cohesive soils with small undrained shear strength, the normalized depth to the second plastic hinge will 
likely be greater than the critical depth coefficient, i.e. r

*
mL ψ> . After the depth to the second plastic hinge Lm

has been determined, the design flexural strength uM  can be calculated from the following equation 
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where aL  is the above-ground height of the pile-shaft. Note that the ultimate soil pressure distribution proposed 
by Matlock (1970) for cohesive soils has been used to determine the depth to the second plastic hinge and the 
design flexural strength in Eqns. 2.5 and 2.6. For cohesionless soils, the normalized depth to the second plastic 
hinge *

mL  and the design flexural strength Mu of the pile-shaft can be determined by 
 

 *
u

*
m VL

3

2=  (2.7) 

 














γ
+=

D'K

V
LVM

p

u
auu

27

8

2

1 3
 (2.8) 



The 14
th World Conference on Earthquake Engineering    

October 12-17, 2008, Beijing, China  
 
 
where *

uV  is the normalized lateral strength, which is defined as *
uV = Vu /(Kpγ’D3) for cohesionless soils. The 

term 'γ  is the effective unit weight of the soil, and Kp is the passive soil pressure coefficient defined as Kp ≡
( ) ( )φ−φ+ sin/sin 11 , where φ  is the effective friction angle of the soil. Note that a linearly increasing ultimate 
soil pressure distribution proposed by Broms (1964) has been assumed in the derivation of Eqns. 2.7 and 2.8. 
 
Step 6 – Determine the amount of longitudinal reinforcement ρρρρl and effective moment of inertia Ie of the 
section. The amount of longitudinal reinforcement ρl for the design flexural strength Mu can readily be determined
using the procedure outlined in Everard (1997). The resulting reinforcement ratio should lie in the practical range 
of 0.75% ≤ρ≤ l 4%. After calculating the longitudinal reinforcement ratio, the effective moment of inertia Ie of the 
pile-shaft section can be estimated. For the level of axial force currently used for design of pile-shafts, cracking of 
the concrete is expected to occur before the yield limit state, which would reduce the flexural rigidity of the 
member. The expression, proposed by Kowalsky et al. (1995), relating the effective moment of inertia Ie to the 
longitudinal reinforcement ratio ρl and column axial load level P, will be used: 
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ρ−++ρ+= 20502051012210  (2.9) 

 
where Ig = πD4

 / 64 is the gross moment of inertia of the section. In estimating the effective moment of inertia, the 
axial force in Eqn. 2.9 may be assumed to arise entirely from the tributary weight of the superstructure, i.e. P = mg. 
 
Step 7 – Determine the initial elastic stiffness K1. The initial elastic stiffness 1K  depends on the soil type and 
can be calculated separately using the set of equations in Table 2.1, where Rc and Rn are the characteristic length of 
extended pile-shaft embedded in cohesive soils and cohesionless soils, respectively.  
 

Table 2.1 Equations for calculating the lateral stiffness of extended pile-shafts 

 
 
 
Step 8 – Determine the elasto-plastic yield displacement ∆∆∆∆y and calculate the displacement ductility factor 
(µµµµ∆∆∆∆))))cal. Upon the determination of the initial stiffness K1, the elasto-plastic yield displacement ∆y and displacement 
ductility factor (µ∆)cal can be calculated using the elasto-plastic idealization shown in Figure 1(b), i.e.: 
 

 
1K

Vu
y =∆  (2.13) 

 ( )
y

u
cal ∆

∆=µ∆  (2.14) 

 

where Vu is the ultimate lateral strength of the pile-shaft, and ∆u the target displacement specified in Step 2.   
 
Step 9 – Iterate on the displacement ductility factor until convergence. The initial selection of the displacement 
ductility factor µ∆ in Step 3 is unlikely to result in a converged solution in the first iteration. If the difference between 
the displacement ductility factor µ∆ used in Step 3 and (µ∆)cal given by Eqn. 2.14 is greater than a specified tolerance, 
say 5%, the displacement ductility factor is revised using the value from Eqn. 2.14 and the iteration returns to Step 3. 
The procedure cycles between Step 3 to Step 9 until the displacement ductility factor µ∆ converges.  

Step 10 – Performance assessment of the pile-shaft. Upon convergence of the solution, the lateral load-
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Table 2.2 Equations defining the lateral load-displacement response of the extended pile-shafts 

 
 
 
displacement response of the pile-shaft, as shown in Figure 1(b), can be generated using the analytical model 
presented in Song and Chai (2008). The lateral force required for the formation of the first plastic hinge Vy and 
the post yield stiffness K2 can be obtained using the equations given in Table 2.2. The pile-head displacement 

1y∆  at the first yield limit state can be calculated from 11 K/Vyy =∆ , where K1 is the initial stiffness of the 
soil-pile system, while the lateral displacement at the second yield limit state 2y∆  can be determined from the 
idealized tri-linear response, i.e.: =∆ 2y ( ) 21 K/VV yuy −+∆ . The curvature ductility demand ( ) yudem φφ=µφ , 
which signifies the level of local yielding in the pile-shaft, may be calculated by 
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where λp1 and λp2 are the length of the first and second plastic hinges normalized by the pile diameter D. Guidance 
on the estimation of the plastic hinge length for reinforced concrete pile-shafts can be found in Song and Chai 
(2008). The terms *

aL  and *
mL  are the normalized above-ground height and normalized depth to the second 

plastic hinge, respectively. The coefficient yy / ∆∆≡α 1  is the ratio between the displacement at the first yield 
limit state ∆y1 and the elasto-plastic yield displacement ∆y. The coefficient ≡β ∆y / [φy (La + Lm)2] is relating the 
equivalent elasto-plastic displacement  ∆y to the elasto-plastic yield curvature φy of the pile. The coefficient η
corresponds to the ratio between the characteristic length, denoted as Rc for cohesive soils and Rn for 
cohesionless soils, and the distance between the two plastic hinges, i.e. (La + Lm) (Song and Chai 2008).   
 
As noted previously, good seismic performance of extended pile-shaft can be ensured by limiting the inelastic 
deformation of the second plastic hinge to within the serviceability limit state. In situations where the design exceeds 
the recommended performance limit or a certain performance criterion cannot be satisfied by the trial diameter or 
target displacement, design parameters must be revised in order to arrive at a satisfactory response of the pile-shaft. 

3. EXAMPLE 
 
The design procedure is illustrated using a three-column bridge bent with extended pile-shafts in soft clay. The 
following material properties are used: (i) concrete compressive strength is f’ c = 34.5 MPa and Young’s modulus is 
E = 27790 MPa, (ii) longitudinal reinforcement is provided by Grade A706 steel with yield strength of fy = 414 
MPa. A concrete cover of 76 mm is assumed for the pile section. The above-ground height of the pile-shaft is La =
3.75 m. The total mass, based on the mass of adjacent half spans of the superstructure and the mass of the bent-cap,
is 675 x 103 kg, giving a seismic mass tributary to each pile-shaft of m = 225 x 103 kg. The soft clay site is assumed to 
have an effective unit weight of γ’  =

 15.5 kN/m3 and an undrained shear strength of su = 40 kN/m2, giving a modulus 
of horizontal subgrade reaction of kh = 67 su =2680 kN/m2. Note that the soft clay site also corresponds to the soil 
category SE according to NEHRP (2001). The design is conducted assuming a peak ground acceleration of pga = 0.4
g. A convergence criterion of 5 % is assumed for the displacement ductility factor in the design process. 
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Step 1 – A trial diameter of m01.D = is chosen, resulting in an aspect ratio of 753.D/La =  for the pile-shaft. 
The axial stress on the pile is P / (f’ c Ag) = 8.1 %, where 2m790.Ag = . The gross moment of inertia is Ig =

4m0490. . The critical depth coefficient of the soil-pile system is /sur 6=ψ (γ’D + 0.5 su) = 6.76. Step 2 – For 
estimating the target displacement, the ultimate drift ratio is %u 4=γ  from Figure 2(a). The normalized depth to 
the second plastic hinge is estimated to be 74.L*

m =  per Eqn. 2.2, giving a depth to the second plastic hinge of 
74.Lm = m. The target displacement is thus 3350.u =∆ m per Eqn. 2.1. Step 3 – The iteration starts with an initial 

guess of the displacement ductility factor of 03.=µ∆ . Using the equation by Priestley et al. (2007) for fixed-head 
pile in cohesive soil with 2kN/m40=us , the equivalent damping ratio is %eq 15=ζ  for 003.=µ∆ . Step 4 –
The pile-shaft is designed with reference to a displacement design spectrum using a peak ground acceleration of 

g.pga 40= , a peak ground velocity of pgv = 1 m/sec and a peak ground displacement of m7650.pgd = . The 
peak ground velocity and peak ground displacement have been estimated using a pgv/pga  ratio of 0.4 g/(m/sec) 
and a (pga x pgd) / pgv2 ratio of 3, as guided by a study in Song et al. (2006) for NEHRP site category SE. For the
target displacement of ∆u = 0.335 m and using an equivalent damping ratio of %eq 15=ζ , the effective period of 
the equivalent elastic system is found to be 631.Teff =  sec. The corresponding effective stiffness of the equivalent 
elastic system is Keff = 3333 kN/m from Eqn. 2.3. With Keff = 3333 kN/m and a target displacement of ∆u = 0.335 m, 
the ultimate lateral strength of the pile-shaft is 1117=uV kN per Eqn. 2.4. Step 5 – Using the normalized lateral 
strength of =*

uV Vu / (su D
2) = 27.93 and the critical depth coefficient of ψr = 6.76, the normalized depth to the 

second plastic hinge obtained by solving Eqn. 2.5 is *
mL = 5.24, giving an actual depth to the second plastic hinge of 

m245.Lm = . The substitution of D = 1.0 m, La = 3.75 m, Lm = 5.24 m, 2kN/m40=us  and 766.r =ψ  into Eqn. 
2.6 gives the design flexural strength of mkN3768 −=uM . Step 6 – The longitudinal reinforcement of the 
pile-shaft is determined using the procedure outlined by Everard (1997). The axial load P  is assumed to arise 
entirely from the weight of the superstructure, i.e. P = mg = kN2200 . For the flexural strength of 

mkN3768 −=uM , the longitudinal reinforcement ratio is found to be %.l 852=ρ . The longitudinal 
reinforcement is assumed to be provided by uniformly distributed #32 bars. With a longitudinal reinforcement ratio 
of %.l 852=ρ , the effective moment of inertia is 4m0280570 .I.I ge == , as calculated using Eqn. 2.9, which 
gives an effective flexural rigidity of 25 mkN107547 −×= .EIe . Step 7 – The characteristic length from Eqn. 
2.10a is Rc = 4.12 m, giving an above-ground height coefficient of ξa = 0.91 per Eqn. 2.11a. The lateral stiffness of 
the soil-pile system calculated from Eqn. 2.12a is K1 = 7288 kN/m. Step 8 – For the ultimate lateral strength of Vu =
1117 kN and the elastic stiffness of K1 = 7288 kN/m, the elasto-plastic yield displacement is ∆y = 0.15 m per Eqn. 
2.13. The displacement ductility factor calculated from Eqn. 2.14 is (µ∆)cal = 2.19. Step 9 – The difference between 
the displacement ductility factor used in Step 3, i.e. µ∆ = 3.00, and the value calculated from Eqn. 2.14, i.e. (µ∆)cal = 
2.19, is 27 %, which is much larger than the specified tolerance of 5 %. In this case, the displacement ductility factor 
is updated using µ∆ = 2.19 and repeated in Step 3 until the displacement ductility factor converges. Table 3.1 shows 
pertinent results during the iteration. It can be seen from the table that the displacement ductility factor converges 
fairly rapidly, resulting in less than 5 % difference after two iterations. In this case, the displacement ductility factor 
converges to µ∆ = 2.15. The final longitudinal reinforcement ratio is ρl = 3.07 %, which is within the practical limits 
for longitudinal reinforcement.  
 

Table 3.1 Convergence of solutions for the design of an extended pile-shaft in a NEHRP SE cohesive soil site 

 
 
 
Step 10 – Upon convergence, local inelastic deformations and hence a sense on the expected performance of the 
pile-shaft can be evaluated. The lateral forced required for the formation of the first plastic hinge is Vy =822kN,
per Eqn. 2.15a. The post yield stiffness of the pile-shaft calculated by Eqn. 2.16a is K2 = 2428 kN/m. The lateral 
displacement at the first and second yield limit states are ∆y1 = Vy / K1 = 0.11 m and ∆y2 = ∆y1 + (Vu

 - Vy) / K2 = 0.25 m, 
respectively. The ultimate displacement of ∆u = 0.335 m can be converted into an ultimate drift ratio of γu = 3.7 %. 
The curvature ductility demand under the converged displacement ductility factor is then calculated using Eqns. 
2.17 to 2.19. The dimensionless quantities α, β and η used for curvature ductility assessment are calculated as: 

7101 ./ yy =∆∆=α , ≡β ∆y / [φy (La + Lm)2]  = 0.38 and 780.=η . The normalized plastic hinge lengths of the 
first and the second plastic hinges, calculated using the guideline in Song and Chai (2008), are λp1 = 0.58 and λp2

= 1.03, respectively. From Eqn. 2.19, the curvature ductility demand µφi is 807i .=µφ . The curvature ductility 
demands in the first and second plastic hinges, as calculated by Eqns. 2.17 and 2.18, are (µφ1)dem = 11.08 and 
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(µφ2)dem = 2.85, respectively. For an extended pile-shaft with a diameter of D = 1.0 m and a longitudinal 
reinforcement ratio of %.l 073=ρ , a curvature ductility capacity of (µφ)cap = 2.97 is expected to be provided for
the serviceability limit state, and the curvature ductility capacity is adequate for the curvature ductility demand of 
(µφ2)dem = 2.85 in the second plastic hinge. To minimize the severity of damage in the pile/bent-cap connection, 
the ductility limit for damage-control limit state should be applied to the first plastic hinge. For the selected 
geometry of the bridge, a confining steel ratio of %.s 01=ρ  is sufficient to ensure a curvature ductility capacity 
of (µφ)cap = 12.68 for the damage-control limit state. The provided curvature ductility capacity is larger than the 
curvature ductility demand of (µφ1)dem = 11.08 in the first plastic hinge.  
 
 
4. CONCLUSIONS 
 
A procedure for displacement-based seismic design of extended pile-shafts is proposed in this paper. A target 
displacement is specified to control the inelastic deformation in the plastic hinges of the pile-shaft so that a 
satisfactory seismic performance of the bridge can be ensured. The design procedure uses a secant stiffness of the 
soil-pile system and an equivalent damping ratio, which includes the inherent (elastic) damping and the hysteretic
damping from yielding of the pile and soil. A useful feature of the procedure is that soil properties, more 
specifically stiffness and strength of cohesive and cohesionless soils, can be incorporated into the design process. 
The proposed procedure is relatively straightforward to implement, requiring relatively few design parameters: (1) 
above-ground height, (2) mass of the superstructure, (3) material properties, and (4) soil conditions at the bridge 
site. Lateral strength of the structure, local curvature ductility demands as well as the main reinforcement ratio for 
the pile-shaft are among the outcomes of the design procedure. Although the design process requires iteration on
the displacement ductility factor, numerical example conducted in this paper shows rather rapid convergence of the 
design solution. Even though the procedure is illustrated using only one example, it is contended that the procedure 
will yield reliable design solutions and is applicable to a wide range of structural and soil properties. The versatility 
of the proposed procedure makes it useful for performance-based seismic design. 
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