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ABSTRACT : 

The effect of uncertainty in structural parameters on the response of a single-storey torsionally-coupled building
subjected to stationary stochastic ground motion is studied here. A reliability-based formulation, where failure
is defined as the exceedance of a predetermined value of the response quantity of interest, is used and solved
using a first-order-reliability method (FORM). The responses of interest are the displacements on the stiff and
flexible side edges, and the base shear and torque at the center of mass. The structural parameters considered
uncertain are the uncoupled lateral and torsional frequencies, and the eccentricity, which are assumed to be
statistically independent of each other. However, the structural response is also a random variable that depends
on the structural parameters, and this requires special consideration in the reliability analysis. It is seen that the
84-percentile and 95-percentile responses are significantly affected by the uncertainty in structural parameters,
especially when lateral-torsional coupling is significant. These effects are more for small eccentricity and
damping ratios. The uncertainty in parameters significantly increases responses, especially when
lateral-torsional coupling in large. These effects are larger for displacements on the flexible side.  
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1. INTRODUCTION 
 
A structure is considered to be lateral-torsionally coupled, when it undergoes torsional motions while subjected
to a purely translation ground motion. Such torsional motion occurs due to eccentricity between center of mass
(CM) and center of stiffness (CS), rotational excitation at base due to earthquake ground motion and spatial
variation of earthquake ground motion. It is found that due to these reasons a symmetric structural system may
also exhibit lateral-torsional coupling. Studies on torsionally-coupled structures were initiated by Newmark
(1969) and continued by Kan and Chopra (1977) and others. These studies only considered the effect of
structural eccentricity and not the effect of torsional ground motions. De. La. Llera and Chopra (1994) used
actual recorded ground motions from three earthquakes in USA and studied the symmetrical structure to
understand the effects of base rotation and stiffness uncertainity. This study reveals dependence of structural
response on stiffness uncertainity, when frequency ratios approach one. This study only concentrated on one
aspect of uncertainty in structural parameters. A more detailed study of the effect of structural parameter
uncertainty is attempted in this paper. A reliability-based formulation similar to that used by Igusa and Der
Kiureghian (1988), based on the method proposed by Hohencichler and Rackwitz (1981), is used here. 
 
 
2. ANALYSIS OF TORSIONAL COUPLED STRUCTURE 
 
2.1 Equations of Motion  
A single-storey torsionally-coupled structure (see Figure 1) with circular footing and rigid circular deck
supported by inextensible, massless columns is considered. This system has three degrees of freedom viz.
translation along x and y-axis and rotation about vertical axis. With the assumption of perfect symmetry about
Y-Y axis and eccentricity ‘e=ey’ along Y-Y axis, the translation along x axis also causes the rotation about
vertical axis. The structure is assumed to be subjected to an uniform earthquake motion modeled as a stationary,
filtered white noise process given by the modified Kanai-Tajimi function (Clough and Penzien 1993).  
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The first (ωfk) and second filter (ωgk), frequencies are considered, corresponding to firm ground, as ωfk = 2.5 Hz
and ωgk = 0.25 Hz, with equal damping ratios for both the filters. (ξfk= ξgk = 0.6). White noise intensity and
duration of strong ground shaking are not required as only normalized response quantities are considered here. 
  

 
Figure 1 Schematic of a single storey torsionally-coupled structure 

 
For the linear structure under consideration, the equations of motion can be written, corresponding to the degrees
of freedom defined as the relative lateral displacement and torsional rotation of the floor centre of mass, as 
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where üfx(t) is the lateral component and üfθ(t) is the torsional component (in this paper it is zero) of foundation
input motion, which is assumed here to be uniform over the foundation with no torsional component; Kxx, Kθθ are
the stiffness values for lateral translation and torsional rotation about vertical axis, respectively; Kxθ and Kθx
denote the stiffness coupling terms. The static eccentricity of the system is normalized with respect to radius of
gyration ‘r’ to obtain a nondimensional eccentricity δ =e/r.  The uncoupled frequencies (i.e. for e = 0) in lateral
and torsional modes are, respectively, defined as: 
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and the tuning ratio of the uncoupled torsional frequency to the uncoupled lateral frequency, defined as the
frequency ratio βt, and a corresponding detuning parameter β, are given as 
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Free vibration characteristics can be obtained in closed form. Assuming that the coupled system frequencies are
normalized as Ω = ω /ωx, the normalized coupled structure frequencies can be written as 
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The corresponding mode shapes can be derived as 
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where the parameter α is given by 
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The solution of Eqn. 2.2 is done using the standard mode superposition method, where the displacement vector
time history u(t) is given in terms of the modal amplitudes Yj(t) as  
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and the corresponding modal equations are given as 
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Solving Eqn. 2.9 for the modal amplitudes and then substitution into Eqn. 2.8 and incorporating Eqn. 2.6, the
displacements corresponding to the degrees of freedom can be written as 
 

 1 2( ) ( ) ( )xu t Y t Y tα= −                   (2.10a) 
 1 2( ) ( ) ( )ru t Y t Y tθ α= +              (2.10b) 

 
The lateral deformation of any resisting element at a distance ‘y’ from the centre of mass along the y-axis can
be written, in terms of these displacements corresponding to the degrees of freedom, as 
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Substituting Eqn. 2.10 into Eqn. 2.11, the expression for z(t) can be written as 
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where Bj is defined as the modal response coefficient for the jth mode. Values for different response coefficients
using ‘r’ as radius of gyration and ‘b’ as half plan width can be expressed as follows: 
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Using standard stochastic analysis procedures in frequency domain approach, PSD function for any response
can be written as (Der Kiureghian 1980) 
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It is shown that many statistical properties of a Gaussian process can be expressed in terms of the first few
moments of its spectral density function, called spectral moments (Vanmarcke 1972). Therefore, the spectral
moments are calculated by following set of equations: 
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2.2 Analysis With Deterministic Parameters 
After computing values of the first three spectral moments, the cumulative probability that response will not
exceed a threshold value r0, can be computed from the expression (Vanmarcke, 1972).  
 

[ ] { }
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−−
−−−=

1)2/exp(
2/exp1

exp)2/exp(1)(
0

2
0

00
0

2
00 λ

λπ
τλ

r
rq

vrrF e
Rt

   (2.16) 

 
where τ is the effective duration of ground motion in seconds. Parameter ν defines the mean zero crossing rate
of the response and is given by, 
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q is a nondimensional parameter, in terms of spectral moments, which takes the values between zero to one and
defines the spread of )(ωRS about the central frequency. The probability that response of the structure will
exceed the threshold value ro i.e. the probability of structural failure (Pf) is given by, 
 

)(1)( 00 rFrp
tRf −=            (2.18) 

 
(1- Pf) is the confidence level suggesting that even if structural response takes a maximum value equal to ro, one
had the confidence level that failure would not occur. Therefore the structural response corresponds to a
specified level of confidence is considered as ro. To calculate desired threshold value, spectral moments are
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calculated and a set of different probability of failure can be computed by changing ro values for the same set of
spectral parameters. Then, using inverse interpolation technique ro value corresponds to the specified
probability of failure can be obtained. 
 
2.3 Reliability Analysis for Uncertain Parameters 
For the analysis presented here, the structural parameters ωθ, ωx and δ are considered as independent normal
random variables. The peak structural response is also a random variable whose distribution is given by Eqn.
2.17 and which is dependent on the other three parameters. For reliability analysis, the set of random variables
is required to be transformed from the original correlated non-normal space into the standard normal space,.
Thus the vector of random variables { }RX x

T δωω θ=  is transformed into standard u space using the
Rosenblatt transformation (Hohenbichler and Rackwitz 1981). 
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A linearized transformation at the design point on the failure surface into standard normal variables is given as
ui = ai + B(Xi  Ri )T. And the inverse transformation to calculate design point from standard normal space (i.e.,
element of ui) back into original space, is obtained by rewriting the above equation for ui as: 
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Here ‘B’ is a lower triangular transformation matrix and ‘J’ is the Jacobian matrix given by 
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The parameters ωx, ωθ and δ are assumed to be normal defined as N(μωx, σωx), N(μωθ, σωθ), N(μδ, σδ). Knowing
the distribution of the structural parameters and the structural response, the probability of failure of torsionally
coupled system can be written as 
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The evaluation of the probability of failure using the above equation is a computationally intensive task. Here
this is done using by approximately estimating the probability of failure using the modified Rackwitz-Fiessler
FORM method (Hohenbichler and Rackwitz 1981). Failure of the torsionally-coupled structure is defined to
occur when response (R) exceeds a level (ro), defined as maximum threshold response of the structure. Thus,
the equation of limit state of reliability can be written as,  

 
g (X, R)  = Z =  r0 - R                     (2.24) 
 

Where Z > 0 is the safe zone, Z < 0 defines the failure zone and r0 = R represented the failure surface. Using the
gradient vectors (Gu) and direction cosines ( ( )α̂ the reliability index (β) is calculated using an iterative procedure.  
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Then using reliability index the probability of failure by First Order Reliability Methods (FORM) can be
calculated as ( )β−Φ=fP . Where Φ(.) denotes the standard normal cumulative distribution function.  
 
 
3. RESULTS AND DISCUSSIONS 
 
As discussed in Section 2, the response quantities considered here are the displacements on the stiff side edge (ZP)
and the flexible side edge (ZQ), and the base shears (Vb) and base torque at the center of mass (Tb). Two different
coefficients of variations - 7% and 10% - are considered for all the basic random variables, i.e. the two uncoupled
frequencies and the normalized eccentricity ratios. The reliability analysis is done repetitively to find the
95-percent confidence level values for each of the above responses, i.e. find the threshold value corresponding to
a 5% probability of failure. The plots of the variation of the 95-percent confidence level values for all the four
response quantities of interest with frequency ratio are presented in Figures 2-5. Two values of mean normalized
eccentricity ratios, one corresponding to a small eccentricity and the other corresponding to a large eccentricity,
are considered in the analysis results presented here. 
 
It should be noted that the responses presented in the figures below are all normalized with respect to the
corresponding responses computed using standard stochastic analysis for a torsionally uncoupled structure
subjected to the stochastic ground motion defined in Eqn. 2.1 with all structural parameters defined by only their
mean values, except that the eccentricity is considered to be zero. 
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Figure 2  Normalized displacement ZP variation with frequency ratio for two values of mean eccentricity  
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Figure 3  Normalized displacement ZQ variation with frequency ratio for two values of mean eccentricity 
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Figure 4  Normalized base shear Vb variation with frequency ratio for two values of mean eccentricity 
 
 

  
 

Figure 5  Normalized base torque Tb variation with frequency ratio for two values of mean eccentricity 
 
It can be seen that except for base shear, where the effect is negligible, uncertainty in structural parameters have a
significant effect on the response values. It can also be seen that uncertainty tends to increase the values of the
response quantities, and this increase is greater as the uncertainty is increased, i.e. the coefficient of variation for
the structural parameters is increased. For displacement responses, it is noted that the effect of uncertainty in
structural parameters seems to be more for smaller eccentricity values, especially when the lateral-torsional
coupling is large; although the results are not presented due to restrictions on paper length, it is seen that the effect
of uncertainty is also larger for smaller damping ratios. Furthermore, the effect of the uncertainty is seemingly
more for displacements on the flexible side than for those on the stiff side. It can also be said that the effect of
uncertainty in the uncoupled frequency parameters is more when the frequency ratio is between 0.8 and 1.2, i.e.
when the lateral-torsional coupling is large. However, when the lateral-torsional coupling is small, the effect of
uncertainty in eccentricity governs. Thus, when uncertainties are considered in both frequencies and eccentricity,
as in the results presented here, the effect of uncertainty is found to be significant across the spectrum of
frequency ratios. 
 
 
4. SUMMARY AND CONCLUSIONS  
 
In this paper the effect of uncertainty in structural parameters, namely the uncoupled lateral and torsional
frequencies and the static eccentricity, on the response of a single-storey torsionally-coupled structure to
stochastic but uniform foundation base motion is studied. Typical wisdom, based on past research, suggests that
the effects of uncertainty in structural parameters on the structural response are of a second-order effect to that
due to the uncertainty associated with the base motion (the reason for defining it as a stochastic process).
However, this study conclusively proves that the effects of uncertainty in structural parameters of a
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torsionally-coupled structure on its response are significant and cannot be neglected in the response analysis. 
 
The effects of uncertainty are greater for smaller eccentricity and damping ratio values, especially when the
frequency ratios are close to tuning, and the lateral-torsional coupling is large. The uncertainty in structural
parameters tends to increase structural response to base motion, and this increase is greater when the uncertainty
in the parameters is more. The effect of parametric uncertainty is more on displacement response on the flexible
side than that on the stiff side. This is primarily because lateral-torsional coupling has a greater effect on the
flexible side response rather than the stiff side displacements. 
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