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ABSTRACT: 
 
The object of this study is to develop an analytical model characterized by a mono-dimensional finite element 
able to reproduce the non-linear flexural-shear interaction of RC shear-critical structures. In the paper, the finite 
element formulation and the constitutive relationships that allow coupling between flexure and shear are 
illustrated together with a brief description of the algorithm which was implemented in an original computer 
program. The model was validated and calibrated by comparison with experimental results. Then, several 
numerical investigations were performed with the proposed model in order to study the effects of non-linear 
shear deformations for squat RC members.  
 
KEYWORDS:   RC Members, Non-linear Analysis, Fibre Beam-Column Model, Shear-Flexure 

Interaction. 
 
 
 
1. INTRODUCTION  
 
The non-linear behaviour of short RC structural elements has been studied, in general, according to different 
approaches, typically based on bi-dimensional finite elements. In some cases also mono-dimensional finite 
element extended for including the effects of shear has been used. The principal purpose of this research is to 
develop a fibre beam-column element which is able of describing the flexure-shear interaction and the shear 
response in the non-linear range. In the category of fibre elements at the date few models (Pietrangeli et al., 
1999; Ceresa et al., 2006; Ceresa et al., 2007) have been proposed for describing the non-linear response of 
structures dominated by shear response, especially in the case of cyclic or dynamic loading. Most of proposed 
models for shear behaviour, as the “strut and tie” models, consider an uncoupled flexural and shear response. 
The models which can overcome this problem are usually based on biaxial constitutive laws. They are 
implemented in bi-dimensional finite elements which can not be easily used for the analysis of complex frame 
structures. Their implementation is rather limited to single structural elements or sub-assemblages. A theory that 
studies shear behaviour of RC elements is the Modified Compression Field Theory (MCFT) proposed by 
Vecchio and Collins (1986; 1988). In the study illustrated in the present paper a constitutive law based on this 
theory was introduced into a flexibility-based fibre element (Filippou et al., 1996). The element was extended in 
order to include non-linear shear deformations. In particular, the biaxial constitutive law was used for modelling 
the behaviour of each fibre. The element was implemented in a special purpose FEM program which is able to 
model generic frames. This computer program was also tested to check its working and its field of applicability. 
Then, a numerical study on the influence of the non-linear shear response was performed.  
 
 
2. FIBRE ELEMENT FORMULATION 
 
The fibre beam-column finite element, illustrated in Figure 1, is based on the model proposed by Filippou et al. 
(1991). The element generalized forces (Fig. 2) are grouped as shown in Eqn.2.1: 
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The vector Q represents the generalized nodal forces, q the generalized nodal displacements, D(x) the section 
internal actions and d(x) the section deformations. Deformations of the generic cross-section are characterized 
by the curvature  χ, the axial strain ε at the centre and the shear strain γ. In the following ∆ indicates the 
increment of all quantities for a step of analysis. In the two-field mixed method, independent shape functions are 
used for approximating the force and deformation fields: 
 
      ( ) ( )i ix x∆ = ⋅∆d a q ;  ( ) ( )i ix x∆ = ⋅∆D b Q  (2.2) 
 
In Eqn. 2.2 a(x) and b(x) are respectively interpolation matrices of deformations and forces while i indicates the 
iteration of structure state determination. Since interpolation functions are assumed dependent on flexibility, 
they are characterized by changing values during the analysis. A particular choice of the interpolation function 
a(x) allows some simplification:  
 
      

11 1( ) ( )i ix x
−− −⎡ ⎤= ⋅ ⋅ ⎣ ⎦a f b F    (2.3) 

 
where f i-1 is the section flexibility matrix and F i-1 is the element flexibility matrix. These interpolation functions 
allows to correlate increment of nodal displacements ∆q i with increment of section deformations ∆d i: 
 
        

11 1( ) ( )i i i ix x
−− −⎡ ⎤∆ = ⋅ ⋅ ⋅ ∆⎣ ⎦d f b F q  (2.4) 

 
With these interpolation functions the element equilibrium equation becomes: 
 
        1 1i i i i− −⎡ ⎤ ⋅ ∆ = −⎣ ⎦F q P Q  (2.5) 

 
where P-Qi-1 are the applied unbalanced forces. 

 
 
3.  MODIFIED COMPRESSION FIELD THEORY AS CONSTITUTIVE RELATIONSHIP 
 
The Modified Compression Field Theory developed by Vecchio and Collins (1986) is characterized by a rotating 
smeared-crack model that represents concrete as an orthotropic material. All equations are formulated in terms 
of average stresses and strains. A local stress conditions at crack locations is however considered. Crack shear 
slips are not calculated and not accounted for in the element deformations. The further development of this 
theory is the Disturbed Stress Field Model (DSFM) which was proposed by Vecchio (2000; 2001) as an 
alternative formulation able to provide a better representation of concrete behaviour by including the relation 
between crack shear stress and crack shear slip.  
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Figure 1 Fibre beam-column model      Figure 2 Finite element forces 
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3.1. Equilibrium condition 
 
Let us consider a RC element (Fig. 3) subjected to uniform stresses σ =[σx σy τxy].  

                     
Equilibrium is examined on two levels: in terms of average stress smeared over the element area and of local 
condition along the crack surfaces. The principal stresses  fc1 and fc2 are parallel and perpendicular to the crack 
direction defined by angle θ in Figure 3. The equilibrium equation for the reinforcements are: 
 
        ; ;x cx x sx y cy y sy xy cxyf f f fσ ρ σ ρ τ ν= + ⋅ = + ⋅ =  (3.1) 

 
On crack surfaces the equilibrium condition is: 
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where ρi is the reinforcement ratio, fsi is the average stress in steel, fscri is the local stress of the i-th reinforcement 
relating to εscri and the angle θni =θ-αi, where αi is the angle of reinforcement. The local increase of 
reinforcement stress, at crack location, leads to the development of shear stress υci along the crack surfaces:  
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3.2. Compatibility relationships 
 
The continuum strain results from smearing of crack over a finite area, while the slip component results from 
rigid body movement along a crack interface. Total or “apparent” strains are denoted as ε =[εx εy γxy]. The 
apparent inclination and principal strains can be calculated using Mohr circle. The shear slip and the associated 
deformation components are calculated as follows: 
 

        ;s
s s

δγ =
     

( ) ( ) ( )sin 2 ; sin 2 ; cos 2
2 2

s s ss s
x y xy s

γ γε θ ε θ γ γ θ= − ⋅ = ⋅ = ⋅  (3.4) 

 
where δs is the slip along the crack surface and s is the crack spacing. 
 
 
3.3. Constitutive laws 

 
The principal compressive stress fc2  in the concrete is a function not only of the principal compressive strain, 
but also of coexisting principal tensile strain. The influence is captured by the reduction factor βd, which is 

 
Figure 3  a), b) Element stresses, c) Principal stress directions 
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calculated using expressions derived from experimental results. This factor is used to define both peak stress fp 
and strain at peak stress εp: 
 
 '

0,p d c p df fβ ε β ε= − ⋅ = − ⋅         (3.5) 
 
The compression response curve of concrete is represented in Figure 4a while steel constitutive relationship is 
illustrated in Figure 4b. Slip δs is calculated according to two approaches (Vecchio, 2000): as a function of shear 
stress υci through a formulation which depends on crack width and compressive strength or as a function of 
angle of principal stress. The maximum of the two obtained values is considered.   

 
 
4. IMPLEMENTATION OF THE MODEL 
 
The model described so far was implemented in a special purpose program organized on three iteration levels. A 
Newton-Rapson (NR) iteration loop at structural level, an element state determination at element level 
(necessary for flexibility formulation) and another iteration loop at each fibre for application of Disturbed Stress 
Field Model (DSFM). The algorithm is organized in the following step: 
 
1.Creation of initial stiffness structural matrix. 
2.Application of load increment and NR iteration. Each NR iteration is indicated by a superscript i. 
3.Calculation of nodal element displacements trough a condensation and a rotation matrix.  
4.Beginning of element state determination procedure: calculation of nodal forces. Each iteration of element 
state determination is indicated by a superscript j. 
5.Calculation of section forces in control sections. 
6.Calculation of section deformations. 
7.Calculation of fibre deformations. 
 
8.Beginning DSFM at the fibre level. Each fibre is characterized by a deformation: 

 
 0x y xyε ε γ⎡ ⎤= =⎣ ⎦ε         (4.1) 

 
Initially it is assumed ε =εc. With application of Mohr circle principal strains ε1 and ε2 for concrete are obtained. 
The average strains εsx and εsy for steel are set equal to those of concrete along x and y axis. After calculating 
average stresses in concrete and steel through constitutive relations, local deformations in reinforcements εsxcr 
and εsycr on crack location are calculated through an iterative procedure: 
 
 ( )2 2

1 1cos ; cos
2sxcr sx cr sycr sy crσ σ
πε ε ε θ ε ε ε θ⎛ ⎞= + ∆ ⋅ = + ∆ ⋅ −⎜ ⎟

⎝ ⎠
        (4.2) 

 
At beginning of procedure ∆ε1cr = 0, then ∆ε1cr is increased at each iteration until subsequent equilibrium 
equation is satisfied: 

 

 

εp ε0 εc2 (a) εy εsh εu εs (b) 
Figure 4 Consitutive laws for concrete (a) and steel (b) 
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 ( ) ( ) ( )2 2
1cos cos

2x sxcr sx y sycr sy cf f f f fσ σ
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⎝ ⎠
        (4.3) 

      
where stresses fsxcr and fsycr are functions of εsxcr and εsycr through constitutive relationship of steel. Then shear 
stress along crack surfaces are calculated: 
 

 ( ) ( ) ( ) ( )cos sin cos sin
2 2ci x sxcr sx y sycr syf f f fσ σ σ σ
π πν ρ θ θ ρ θ θ⎛ ⎞ ⎛ ⎞= ⋅ − ⋅ ⋅ + ⋅ − ⋅ − ⋅ −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
        (4.4) 

 
where θσ is the angle of principal stresses. Being sx and sy crack spacings in x and y directions it is possible to 
determine the crack spacing s and the crack width w: 
 

 1
1 ;sin cos c

x y

s w s

s s
σ σ

εθ θ= = ⋅
+

        (4.5) 

 
Once the shear slip is calculated, it is possible to know the value of γs and the strain components due to shear 
slip εs (Eqn. 3.4). Then strain components εc= ε-εs are obtained. Considering the new values of εc, an iterative 
procedure begins, that stops when the difference between subsequent values of εc are smaller than a fixed 
tolerance. Once the convergence is reached, values of tangent modulus for the two principal directions are 
calculated form equations of constitutive laws. These values are introduced into diagonal matrices referred to 
principal directions. Trough rotation matrix it is possible to pass from system of principal axes to original 
system. The stiffness matrices of each fibre are assembled in order to obtain the modulus matrices Es and Ec of 
all fibres of the section, which become bandwidth when flexure-shear coupling begins. From these matrices the 
stiffness matrix of section is obtained. 
 
9.Calculation of section resisting forces Dj

R(x). 
10.Calculation of unbalanced section forces Dj

u(x) = Dj(x)-Dj
R(x). 

11.Determination of section residual deformations. 
12.Determination of residual nodal displacements and then check of the convergence by energy criterion. If 
convergence is reached Qi is set equal to Qj and Ki

ele to Kj
ele. Then another element is examined. When 

convergence is reached for all elements the procedure continues from step 13. If convergence is not achieved j is 
incremented to j+1and a new element iteration begins. 
13.Caculation of resisting nodal forces Fi

R and of stiffness matrix of structure. 
14.Calculation of unbalanced nodal forces Fi

u =P - Fi
R then check of the convergence at structural level. If 

convergence is achieved the NR procedure is stopped and a new load increment is applied, otherwise i is set 
equal to i+1 and another NR iteration is performed. 
 
 
5. NUMERICAL INVESTIGATIONS. 
 
5.1. Comparison between numerical and experimental results 
 
The comparison was carried out on a shear wall loaded by a force at the top. Considered experimental data are 
those of Vulcano and Bertero (1987). The comparison was performed between numerical results obtained with 
proposed model, experimental results and numerical results obtained by the three vertical line element (TVLE) 
proposed by Vulcano and Bertero. Geometric layout of tested wall is illustrated in Figure 5. The comparison 
between numerical and test results, shown in Figure 6 in terms of base shear-top displacement curve, allowed 
calibration and validation of model. 
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5.2. Analysis of a bridge pier  
 
A bridge pier with circular cross-section loaded by a force at its free end was analyzed with the proposed model 
for investigating the non-linear flexure shear coupling. The analyses were repeated by changing the height of the 
pier L and by keeping the same section diameter D. Thus the control parameter of the analysis was the ratio L/D. 
Description of examined piers and of modelling assumptions are shown in Figures 7, Figure 8 and in Tab. 5.1. 
With regard to mechanical properties of materials, a concrete with cylinder compressive strength equal to 45 
MPa and a steel with yielding stress equal to 430 MPa were considered. For each L/D ratio, two types of 
analysis were made: one considering non-linear flexural behaviour and linear shear response, uncoupled by the 
flexural one; the other considering coupled non-linear flexural and shear behaviour.  

 
Tab. 5.1 Characteristics and modelling assumptions for considered RC piers 

Diameter [m] 2 2 2 2 2 2 2 2 2 2 
Height [m] 2 4 6 8 10 12 14 16 18 20 
L/D 1 2 3 4 5 6 7 8 9 10 
n. of elements 2 4 5 6 7 8 8 9 10 11 
Element length 1.00 1.0 1.20 1.33 1.42 1.50 1.75 1.77 1.80 1.81 

 
By calling with dMV the top displacement associated to the base shear at yielding and calculated considering non-
linear flexure-shear interaction, and with dM the same type of displacement obtained by keeping linear the shear 
behaviour, the results of parametric analysis are illustrated in Figure 9a. In the Figure the ratio dMV/dM is plotted 
as a function of the ratio L/D. This graph shows that non-linear flexure-shear interaction affected the response in 
a significant way for values of L/D lower than 4. In Figure 9b VM is the value of base shear calculated 
considering linear shear behaviour while VMV is the value of base shear obtained considering non-linear shear 
behaviour. Figure 9b illustrates the ratio VM/VMV calculated at fixed values of top displacement in the non-linear 
range and plotted as a function of the ratio L/D. This diagram shows again the importance of non-linear shear 
response. Figure 10 illustratres the diagrams of base shear versus shear deformation evaluated at different 
locations along the height of the pier. This graph shows that the shear response did change along the height 
when non-linear flexure-shear interaction was included in the analysis. On the other hand the diagram of base 
shear versus shear deformation did remain linear and constant along the height when linear shear response was 
considered. Since shear forces are constant along the height while diagrams of shear versus shear deformation 
did change, it is clear that the variation of bending moment along the height did affect the shear deformations. 
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            Figure 5 Tested wall       Figure 6 Comparison between numerical and experimental results 
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                 Figure 7 Pier under study              Figure 8 Fibre modelling of circular cross-secion 
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This result highlights the influence of flexure-shear interaction in the non-linear response. 

 
 
5.2. Analysis of a squat RC shear wall  
 
The study is about a cantilever RC shear wall loaded by a force at its free end (Figure 11) and characterized by 
equal values of base length and height. With regard to mechanical properties of materials, a concrete with 
cylinder compressive strength equal to 30 MPa and a steel with yielding stress equal to 430 MPa were 
considered. In this analysis the wall was modelled with 2 elements and 3 control sections. From Figure 12, 
which shows the diagram of base shear versus top displacement and the diagram of base shear versus shear 
deformation, it is possible to observe that for this kind of wall the non-linear shear deformation was decisive. 

 
Before cracking, the model based on non-linear shear deformations and the model based on elastic shear 
response produced same results. On the contrary the post-cracking structural behaviour was strongly influenced 
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                Figure 9 Results of parametric analysis in terms of displacement (a) and base shear (b)    
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Figure 10 Diagrams of shear versus shear deformation for L/D =2 
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Figure 11 Geometry of the wall under study 

 

0
,5

1
1

,5
2

2
,5

3
3

,5
4

4
,5

-0 ,50 - 1 ,5 - 2 , 5 -3 ,5 4 ,5- 1 5-2 - 3 - 4

1 0
5

T
a

g
li

o
 

a
ll

a
 

b
a

s
e

 [
N

]

S p o s ta m e n to  i n  s o m m i tà

F le s s io n e  n o n  l in e a r e  e  ta g li o  lin e a re

F le s s io n e  e  ta g li o  n o n  l in e a r i

Nonlinear Flexure Only
Nonlinear Flexure-Shear

Top displacement [mm] 

B
as

e 
sh

ea
r [

N
] 

(a)        
0

0
,5

T
a

g
li

o
  

[N
]

1
1

,5
2

2
,5

3
3

,5

2
S c o r rim e n to

4 6 8 1 0 1 2 1 4 1 6 1 8 2 0

4

1 0 5

F le s s io n e  n o n  l in e a r e  e  ta g li o  lin e a re

F le s s io n e  e  ta g l i o  n o n  lin e a r i

Nonlinear Flexure Only 
Nonlinear Flexure-Shear 

Shear deformation γ 

B
as

e 
sh

ea
r [

N
] 

(b) 
        Figure 12 Diagrams of base shear versus top displacement (a) and shear deformation (b) 
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by non-linear shear response (Fig. 12). Figure 13 represents the diagrams of stresses along the height of the 
fixed section. The stresses at the beginning of the analysis and the stresses after cracking are illustrated together 
in order to underline the modifications of stress distribution along the section height.  

 
 
6. CONCLUSIONS 
 
A new fibre beam-column element able to reproduce the non-linear behaviour of squat structures was 
formulated and implemented in an original computer program. The main characteristics of the model are 
substantially the flexibility formulation and the constitutive relationship characterized by a rotating smeared-
crack model. The proposed model was calibrated and validated through a comparison with experimental results 
and various numerical analyses were performed in order to study the influence of non-linear flexural-shear 
interaction. Analyses underlined that the model was able to reproduce flexure and shear non-linear response and 
above all, the coupling between flexure and shear in the non-linear range. This aspect did affect significantly the 
response of examined squat RC structural elements, especially in terms of deformation. This research is a 
starting point for further studies to improve and validate the model, for example through the comparison with 
cyclic loading test. 
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    Figure 13 Stress distributions along the base section 


