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ABSTRACT : 
A methodology of optimum sensor placement for structural health monitoring, which simultaneously meets the 
requirements of the damage identifyability and the modal differentiability, is presented in the paper. The modal 
differentiability and damage identifiability are two crucial issues for structural health monitoring. However, the 
optimum sensor locations based on the modal differentiability contradicts the results based on the damage 
identifiability in the previous research. Firstly, the output of the damaged structure is expressed in time domain as a 
function of mode shapes, eigenvector sensitivity and modal coordinates, which relates the modal differentiability with 
the damage identifiability. Secondly, the formulation for the FIM is presented, and the optimal criterion is proposed to 
maximize the 2-norm of the FIM and to minimize the condition number of the output matrix. Thirdly, an iterative 
algorithm is developed to get the optimal sensor placement for the number of available sensors. Finally, numerical 
examples are carried out to demonstrate the feasibility and effectiveness of the proposed approach. The results show 
that the damage can be accurately identified by the information of the sensors placed by the proposed approach. 
The novel method effectively overcomes the contradiction between the modal differentiability and the damage 
identifiability. 
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1. INTRODUCATION 
 
The structural damage identification based on modal measurements has received much attention over the past several 
decades because of its important in structural health monitoring (Doebling et.al., 1996). The existing methodologies 
rely on the fact that the occurrence of the damage in a structure leads to the changes in the modal characteristics, i.e. 
modal frequency, mode shape and modal damping ratio, of the structural system. The structural damage identification 
is typically a kind of inverse problem in nature. According to the differences of the theoretical formulation, the 
techniques of the structural damage identification are mainly categorized into three types: signature analysis or 
pattern recognition approaches, finite-element model updating or system identification approaches and neural 
networks approaches.  
 
No matter what kind of approach is adopted, the accuracy of the damage identification would highly depend on the 
modal measurements before and after the damage occurrence. Therefore, the high-spatial resolution and noise-free 
measurements are expected to provide the sufficient information that can be extracted from the measured data. 
Unfortunately, due to the cost-effective considerations, the instrument limitations and the ambient disturbance, only 
sparse and noisy measurements can be obtained from the limited sensor locations in a real structure. Consequently, 
the optimal selection of the number and location of sensors has become a fundamental problem for structural damage 
identification (Udwadia, 1994). 
 
Structural damage identification with modal measurements involves in not only the structural parameter identification 
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but also the modal identification. Therefore, the optimal sensor placements (OSP) for structural damage identification 
with modal measurement should simultaneously take consideration of the modal differentiability and the parameter 
identifiability. However, to author’s knowledge, the two objectives are studied individually at present. (Cobb and 
Liest, 1996) presented a method of the optimal sensor placement for the purpose of the structural damage 
identification. (Shi et al., 2000) proposed a methodology of optimal sensor placement for structural damage 
identification by maximizing the FIM, which is related with the eigenvector sensitivity analysis. It is noted that the 
aforementioned research has an implicit assumption that the modal data, which is used to form the FIM by using of 
the eigenvector sensitivity, are clearly identified or differentiated. In fact, the maximization of the FIM based on the 
eigenvector sensitivity cannot maximize the FIM based on the modal matrix, which is proposed by references 
(Kammar, 1991). This contradiction leads to that the sensor placement optimized by eigenvector sensitivity is 
impossible to meet the requirements of the modal differentiability and identifiability. In a result, the poorly identified 
modal data will make the damage identification failure.  
 
A novel methodology of optimal sensor placement for structural damage identification, which can simultaneously 
meet the requirements of modal differentiability and damage identifiability, is presented in the paper. In this study, 
first, the output of the damaged structure is expressed in time domain as a function of mode shapes, eigenvector 
sensitivity and modal coordinates, which relates the modal differentiability with the damage identifiability. Then, the 
formulation for the FIM is presented, and the optimal criterion is proposed to maximize the 2-norm of the FIM and to 
minimize the condition number of the output matrix. The maximization of the FIM results in an efficient unbiased 
estimator of the modal coordinates and the damage coefficients. And the minimization of the condition number makes 
the estimator more robust because that the parameters of the undamaged structure are not exactly known while the 
parameters of the damaged structure are unknown at all. Third, an iterative algorithm is developed to get the optimal 
sensor placement for the number of available sensors. Final, numerical examples are carried out to demonstrate the 
feasibility and effectiveness of the proposed approach.  
 
 
2. THEORITICAL FORMULATION 
 
The governing differential equation of motion for a -dof structural system is given as N
 

( )MX CX KX F t+ + =&& &         (2.1) 
 
where M ,  and C K  are the mass matrix, damping matrix and stiffness matrix, respectively; X&& , X&  and X  
are the acceleration vector, velocity vector and displacement vector, respectively.  
 
In common, the damage in a structure leads to the change only in the stiffness but not the mass. Because that the civil 
structure is often slightly damped, the stiffness changes would not significantly affect the damping properties of the 
structure. The stiffness, modal eigenvalues and mode shapes of damaged structure can be expressed as 
 
            (2.2) d d dK K K= + ∆ Λ = Λ + ∆Λ Φ = Φ + ∆Φ
 
where the superscript  denotes the damaged case; u K∆  is the small change in stiffness due to damage in a 
structure;  and  are the small changes in the mode shapes and eigenvalues, respectively. It is noted that the 
assumption of the small perturbation is reasonable for the incipient damage. In structural health monitoring, it is 
normally desired to obtain information when there are relatively small changes in stiffness, prior to a large change 
that is catastrophic. Therefore, the assumption of the small perturbation is sufficient for optimal sensor placement. 
The changes in stiffness can then be expressed as a fractional change of the elemental stiffness elements. 

∆Φ ∆∆
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where  and iK iδ  are the -th elemental stiffness matrix and the corresponding damage coefficient, respectively; i
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NE  is the total number of the structure. This model is suitable in the case that the change in stiffness due to damage 
is proportional to the elemental stiffness. Even though in the case that the change is not proportional, the model works 
well since this assumption does not change the essence of the requirement of the damage localization. 
 
For a small perturbation, the equation of the naturally un-damped vibration of the damaged structure becomes 
 
       ( )( ) ( )( )K K M+ ∆ Φ+∆Φ = Λ+∆Λ Φ+∆Φ      (2.4) 
 
By using of the modal technique, the changes in -th mode shape due to structural damage can be expressed as i
 
          δφ ⋅=∆ ii S           (2.5) 
 
where  is the sensitivity matrix of the -th mode shape with respect to the damage coefficient vector iS i δ . 
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The changes in all mode shapes can be rewritten in a matrix form as 
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where  is a  vector with zero in each element. 0 1×NE
 
 
3. FISHER INFORMATION MATRIX FOR DAMAGED STRUCTURE  
 
According to Kammer, the measurement equation of structural system can be expressed as 
 
         ( ) ( ) ( )Y t q t v t= Φ +          (3.1) 
 
where  is the vector of modal coordinates at time ; q t ( )v t  is the error vector due to measured noise and 

modeling error, which is assumed as a stationary Gaussian white noise process with zero mean and a variance of 2
0Ψ . 

For simplification, the error vector  is assumed that the measured noise and modeling error are uncorrelated 
and possesses identical statistical properties in each sensor. 

( )v t

 
For structural damage identification or health monitoring, the current state is unknown so that the measurement 
equation cannot be directly obtained by Eqn. 3.1. By using of Eqn. 2.2, the measurement equation of unknown state is 
given as follows. 
 

         
( ) ( ) ( )

( ) ( )

d d d d

d d

Y t q t v t

q t v t

= Φ +

= Φ + ∆Φ + ( )
        (3.2) 
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By substituting Eqn. 2.8 into Eqn. 3.2, the measurement equation can be expressed as 
 

             

    (3.3) 

( ) ( ) ( ) ( ) [ ] ( )
( ) ( )

d
d d d

d

q t
Y t S q t v t S v t

q t
⎧ ⎫⎪ ⎪= Φ + Ω + = Φ +⎨ ⎬Ω⎪ ⎪⎩ ⎭

d

 
The above equation is rewritten in a compact form as 
 

         ( ) ( )dY t v t= ΓΘ+ d            (3.4a) 

         [ ]SΓ = Φ              (3.4b) 

         
( )
( )

d

d

q t
q t

⎧ ⎫⎪ ⎪Θ = ⎨ ⎬Ω⎪ ⎪⎩ ⎭
            (3.4c) 

 
By compared with Eqn. 3.1 there are two types of variables in Eqn. 3.4, in which the former is the state vector  
(i.e. the modal coordinates) and the latter is the damage coefficient matrix 

q
Ω . Eqn. 3.4 not only relates the system 

states with the structural damage but also connect the undamaged target modes with the damaged output 
measurements. Although Eqn. 3.4 assumes that the sensors measure displacement, the velocity and acceleration 
measurement can be obtained by the similar way. 
 
For an efficient unbiased estimator, the covariance matrix of the estimate error for damaged or unknown system is 
given by 
 

      

( )( )

[ ] [ ]
( )

1

0

1

1
2

0

ˆ ˆ
Td dT d

T

d

y yE

S S
Q

−

−

−

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂⎡ ⎤ ⎡ ⎤Θ −Θ Θ−Θ = Ψ⎢ ⎥⎜ ⎟ ⎜ ⎟⎣ ⎦⎢ ⎥⎣ ⎦ ∂Θ ∂Θ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤Φ Φ⎢ ⎥= =
⎢ ⎥Ψ⎣ ⎦

        (3.5) 

 
where  is the Fisher information matrix; Q E  denotes the expected value; Θ̂  is the efficient unbiased estimator 

of ;  is the variance of error vector for damaged or unknown structure. The Fisher information matrix can 
then be expressed as 

Θ 0
dΨ

         
[ ] [ ]

( ) ( )
0

2

0 0

T d

d d
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Φ Φ

= =
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2          (3.6)  

 
Because of the uncorrelated and identical statistical properties of the error vector, 0

dA  will be referred to as the 
Fisher information matrix, 
 
         [ ] [ ]0

TdA S S T= Φ Φ = Γ Γ           (3.7) 
 
where [ ]SΓ = Φ  is the output matrix of the damaged structure. It is noted that the proposed FIM is different 
from the FIM defined by previous literature. In this study, the FIM includes two types of information: the modal 
partitions  make the target modes of undamaged structure linearly independent while the sensitivity partitions  Φ S
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reflect the sensitivity of target modes with respect to structural damage. To obtain the best estimator, the 
maximization of FIM (Eqn. 3.6) is carried out in a certain norm, which will result in the minimum covariance of state 
vector  and damage coefficient matrix . q Ω
 
By introducing the individual goal of optimal sensor placement, the proposed FIM can deduce two special cases: 
 
The first case (Modal Differentiability): The partitions  are omitted from the output matrix . The FIM is then 
derived as follows 

S Γ

 
           0

TA = Φ Φ            (3.8) 
 
Eqn. 3.8 is as same as Effective Independent (EfI) method proposed by (Kammer, 1991), which only renders the 
modal partitions  linearly independent or observable. Φ
 
The second case (Damage Identifiability): The partitions Φ  are omitted from the output matrix . The FIM is then 
derived as follows 

Γ

 
           d TA S S=            (3.9) 
 
Eqn. 3.9 is as same as the one proposed by (Shi et. al., 2000), which only renders the sensitivity partitions  
identifiable based on the assumption that the modes are observable or differentiable. This method is abbreviated as 
DS in this study. 

S

 
From Eqn. 3.8 and 3.9, the formulations of FIMs are obviously different since modal partitions are not equal to 
sensitivity partitions (i.e. ). Thus, maximization of  is impossible to lead to maximization of . This 
fact will result in that the measurements in sensor locations optimized by damage identifiablity have poorly modal 
differentiability. In this study, the contradiction between modal differentiability and damage identifiability in 
accordance with the individual optimal goal will be numerically illustrated in the Section 5. 

SΦ ≠ dA 0A

 
 
4. ALGORITHM OF OPTIMAL SENSOR PLACEMENT  
 
If  sensors are available, the optimal sensor locations are can then be obtained by selecting  locations, out of 
possible , so that a certain norm of the FIM 

m m
N 0

dA  is maximized. According to Eqn. 3.4 and 3.7, the optimal 
criterion is given as bellow 
 
          ( )1 0max dJ A= Θ            (4.1) 

 
where operator ⋅  is a suitable scalar norm. 
 
In nature, optimal sensor placement and damage identification are typically inverse problem. Therefore, the quality of 
the estimate is seriously dependent with the condition number of output matrix Γ  or FIM. The condition number 
gives a measure of the estimate’s robustness to sensor noise and modeling errors due to discretization error and 
inaccurately nominal parameters. It is noted that the maximization of FIM cannot guarantee the maximization of the 
condition number of the output matrix or FIM. The smaller values of the condition number are preferred to best 
estimator. For optimal sensor placement, the condition number should be considered in the optimal criterion, i.e. 
 

          ( ){ }2 minJ cond= Γ Θ⎡ ⎤⎣ ⎦           (4.2) 

 
Since the condition number is positive, the optimal criterion can be rewritten as 
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          ( ){ }1
2 maxJ cond −= Γ Θ⎡ ⎤⎣ ⎦         (4.3) 

 
where  is the condition number of output matrix cond Γ . 
 
By simultaneously considering norm and condition number, the optimal criterion can be defined as 
 

         ( ) ( ){ }1
0max dJ A cond −= Θ + Γ Θ⎡ ⎤⎣ ⎦        (4.4) 

 
To maximize the optimal criterion (Eqn. 4.4) in a certain norm and condition number, the goodness and robustness of 
the estimator can be obtained simultaneously, which is important for damage identification in a real structure. 
 
According to the definition of 2-norm and the condition number, the optimal criterion can be rewritten as 
 

         ( ) ( )
( )

2
1

1

max rJ
σ

σ
σ

⎧ ⎫Γ Θ⎡ ⎤⎪ ⎪⎣ ⎦= Γ Θ +⎡ ⎤⎨ ⎬⎣ ⎦ Γ Θ⎡ ⎤⎪ ⎪⎣ ⎦⎩ ⎭
      (4.5) 

 
In Eqn. 4.5, the first term is not equal to the second term in the order of magnitude. To avoid that the smaller term is 
masked by the bigger term, the scalar transform should be carried out before the optimal process. The 2-norm of FIM 
and the condition number of output matrix Γ  is normalized by the maximum and minimum values of the 
corresponding terms into the interval [ ]0,1 , so that two terms in the optimal criterion can then be calculated in a 
same order of magnitude. 
 
Once the number of sensors  is given, according to the optimal criterion (Eqn. 4.5), the algorithm of optimal 
sensor placement is proposed in the following steps: 

m

 
1. Determine the number of the target modes, and compute the target modes and the corresponding sensitivity by 

using FEM. 
2. Set , delete the -th row of output matrix 1:k = N k Γ  that corresponds to the -th sensor location, and 

calculate the normalized optimal criterion . 
k

kJ
3. Sort  in a descending order. ( 1,2, ,kJ k N= L )

a

4. Select the largest , which means that the sensor in this location does not contribute substantially and is not 
robust. 

kJ

5. Delete the sensor corresponding to the largest . kJ
6. Set  and form output matrix without the row deleted in step 5. 1N N= −
7. Repeat step 2 to 6 until the number of the remaining sensors is , and  sensor locations corresponding to 

the optimal criterion give the optimal sensor placement. 
m m

 
 
5. NUMERICAL SIMULATION 
 
To demonstrate the feasibility and effectiveness of the proposed method, the numerical examples of a truss structure 
were carried out in the study. The structure, which was also used to validate the algorithm by Shi et. al., is a 
two-dimensional truss shown in Fig. 1. The model consists of 31 spar elements, 14nodes and 28 degrees-of-freedom. 
The material parameters of the structure are as follows: elastic modulus 70E GP= , and mass density 

32770kg mρ = . The section area of the spar is 20.001A m= . 
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Figure 1 Planar Truss Model 

 
In the numerical simulations, the target modes are the first three modes and the number of the sensors is 15. Firstly, 
the OSP was studied by the proposed method (abbreviated as DRS), EfI method and DS method. Then, the damage 
identification was performed with modal measurements on the optimal locations to compare the OSP effectiveness. 
 
With the first three modes, the sensor locations were optimized by EfI and DS method, respectively. The optimal 
results are both listed in Table 1. From Table 1, the sensor locations are not same, which indicates that the different 
OSP may lead to the contradiction between the modal differentiability and damage identifiability. To remedy the 
contradiction, the OSP was studied by the DRS method (listed in Table 1). From Table 1, the sensor locations 
optimized by the proposed method are different from the results of FfI method as well as the results of Shi’s method.  
 

Table 1 Optimal sensor locations based on three different methods 
 Optimal sensor locations (DOF) 

EfI 4 6 8 10 12 14 16 17 18 19 20 21 22 23 25
DS 1 3 6 7 10 11 12 13 14 15 17 18 19 20 22

DRS 1 4 6 7 8 9 10 11 13 15 16 18 20 22 23
 

To validate the performance of the optimal sensor locations for damage identification, the damage identification were 
carried out by sensitivity analysis method. The damage coefficients are solved by the following equation.  
 

1ˆ [ ]T T
iδ −= ∆ΦS S S          (5.1) 

 
The damage was assumed with a reduction in the stiffness of bars in the structure. In this study, the damage elements 
were bar 15 and bar 17, and the damage severity were 30% and 20%, respectively. The identification results were 
shown in Fig. 2. The results of the proposed method (DRS) clearly identify the damaged elements in bar 15 and 17. 
However, the identification results based on EfI method display that the damages occur in not only element 15 and 
element 17but also elements 4, 23, 27 and 29. Moreover, the identification results based on Shi’s method show that 
the damages occur in damage elements 15 and 17 as well as undamaged elements 4, 6, 11 and 18. The numerical 
simulations demonstrate that the proposed method can select the sensor locations where not only the modal 
differentiability but also the damage identifiability are both optimal. 
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Figure 2 Damage identification with modal measurements on different sensor locations 
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6. CONCLUSIONS 
 
A novel methodology of optimal sensor placement for structural damage identification, which can simultaneously 
meet the requirements of modal differentiability and damage identifiability, is presented in the paper. Firstly, the 
output of the damaged structure is expressed in time domain as a function of mode shapes, eigenvector sensitivity and 
modal coordinates, which relates the modal differentiability with the damage identifiability. Secondly, the formulation 
for the FIM is presented, and the optimal criterion is proposed to maximize the 2-norm of the FIM and to minimize 
the condition number of the output matrix. Thirdly, an iterative algorithm is developed to get the optimal sensor 
placement for the number of available sensors. Finally, numerical examples are carried out to demonstrate the 
feasibility and effectiveness of the proposed approach. 
 
According the numerical results, it clearly shows that the optimal criterions, based on modal differentiability and 
damage identifiability respectively, can leads to the contradiction of the optimal sensor placement. The proposed FIM 
includes not only the modal partitions which make the target modes of undamaged structure linearly independent but 
also the sensitivity partitions which reflect the sensitivity of target modes with respect to structural damage. The 
novel FIM effectively remedies the contradiction between the modal differentiability and damage identifiability. 
Moreover, the maximization of the FIM results in an efficient unbiased estimator of the modal coordinates and the 
damage coefficients. And the minimization of the condition number makes the estimator more robust because that the 
parameters of the undamaged structure are not exactly known while the parameters of the damaged structure are 
unknown at all. The numerical simulations demonstrate that the proposed method is a promising tool of the optimal 
sensor placement for structural damage identification with modal measurements. 
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