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ABSTRACT : 

A method to locate and evaluate damaged structural and no structural elements in buildings is presented. In order to 
detect damage the proposed method uses as data the modal shapes and vibration frequencies of the structures. The 
severity of the damage is measured in terms of the changes of stiffness of the structural elements. In order to do it, the 
method uses the analytical model of the structure to represent its initial state without damage. The modal shapes and 
vibration frequencies of the damaged state of the structure are used to fit their lateral stiffness matrix. Whit this matrix 
and by using an iterative process, the damaged elements of the structure are detected. Application of the method is 
illustrated evaluating different damage states of building models. Additionally, the effect of incomplete modal 
information is evaluated and discussed. 

KEYWORDS: Damage detection, Stiffness loss, Transformation matrix, Structural damage, damaged 
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1. INTRODUCTION 
 
It is of great interest for engineers to know the damage that a structure subjected to natural phenomena undergoes. For 
long time, the damage state of the structures has been considered subjectively through the experience. Today, several 
procedures based on different kinds of tests and analyses are being developed and provide quantitative estimations. 
Because of their physical properties, the dynamic characteristics of the structures may vary. For this reason, these 
have been studied in order to quantify the observed damage. In this way, the variations in modal shapes and vibration 
frequencies are related to the loss of stiffness. Thus, by using the lateral stiffness of the structure, which can be 
obtained from its dynamic response and initial stiffness, it is possible to locate and assess its damage by comparing 
both states. 
In this paper the problem of damage detection in building frames from its dynamic characteristics (modal shapes and 
vibration frequencies), is studied. In order to detect damage in structural and non-structural elements, the 
Transformation Matrix method, TMm (Escobar et al., 2001) is proposed. Since the changes in the stiffness of the 
elements that compose a structure influence directly their lateral stiffness, a geometric transformation matrix is used 
to locate and assess damage in these elements. 
The method requires modal shapes and vibration frequencies of the current state of the structure to adjust the 
condensed stiffness matrix by using the procedure of Baruch and Bar-Itzhack (1978). 
In this paper the damage is expressed as the loss of stiffness. With this method it is possible to locate where the 
structure has been damaged and to compute the percentage of its stiffness degradation. 
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2. BACKGROUND 
 
All structures (buildings, bridges, offshore structures, communication towers, etc.), accumulate gradual damage 
through their lifetime. Thus, it is of great importance to locate and assess the damage that can be observed. In this 
way, it could be possible to improve its safety level by reinforcing or replacing the damaged structural elements. 
When using dynamic tests to determine the vibration frequencies of structures, any reduction in their values can be 
interpreted as a loss of stiffness. Nevertheless, in order to detect, with certain precision level, the damage of a 
structure, it can be necessary to record changes in their vibration frequencies, as minimum, 5% approximately (Creed, 
1995). It is important to mention that, in some structures, changes in their vibration frequencies do not imply the 
existence of damage. This is the case of concrete and steel bridges with changes that exceed 5% in their vibration 
frequencies values due only to environmental conditions (Aktan et al., 1994). On the other hand, if some repair to the 
structure has not been carried out, values of vibration frequencies, greater than the expected, can indicate that the 
stiffness of its supports increased (Morgan and Oerstele, 1994). 
From results of vibration tests of reinforced concrete plane frames (Salawu, 1997), it has been observed that the 
degree of reduction of the natural vibration frequency, depends on the relative position of the damage with respect to 
modal shapes. Also, when the damage affects zones of high stresses in frames, reductions until 15% in their vibration 
frequencies can be observed. In the opposite case, when damaged zones present display low stress levels, damage 
detection using vibration frequencies is not very reliable (Salawu, 1997). 
Analytical models of prestressed concrete structures, have shown that vibration frequencies are little sensitive to 
changes in stiffness to simulate structural damage (Camomilla et al., 1993). Whereas in real structures, if vibration 
frequencies are determined from ambient vibration tests where essentially only the dead load participates, losses until 
50% of the prestress force are not detected by means of changes on frequencies. This is because the loss of the 
prestress force only reduces the load to which the excessive tension in the concrete would open cracks in the structure. 
So, if the tests are carried out for lower values of load they will not generate changes in its frequencies of vibration.
 
3. FITTING OF THE STIFFNESS MATRIX OF STRUCTURES 
 
Most of the algorithms to detect damage in structures carry on a comparison between the analytical stiffness matrix 
of the structure in an initial state without damage, and the stiffness matrix of the damaged structure. The goal is to 
observe variations between both states in order to compute damage in the structure. One way to obtain the stiffness 
matrix of a structure without damage is starting from its analytical model, by means of its structural blueprints. 
In this paper the global stiffness matrix is condensed to the primary degrees of freedom. In the case of buildings, the 
primary degrees of freedom are the lateral displacements, thus, the condensed stiffness is a lateral stiffness matrix. 
To fit the stiffness matrix of a damaged structure modal parameters obtained experimentally can be used (Acevedo, 
2005). This author observed that among the current methods to fit stiffness matrices of structures, the one proposed 
by Baruch and Bar Itzhack (1978) provides the smaller values of relative error. This method reconstructs the 
stiffness matrix of a damaged structure, accepting that the masses matrix is constant. The reconstructed stiffness 
matrix of the damaged structure, can be obtained diminishing the norm of the error between this matrix and the one 
of the structure without damage. This is: 
 

[ ] [ ] [ ][ ][ ] [ ] [ ][ ][ ] [ ] [ ]
[ ][ ] [ ][ ][ ] [ ] [ ][ ] [ ] [ ]

T T
U A A X X A A X X A A

T T T2
X X A X X A A X X X A

K K K M M K M

K M M Mω

= − Φ Φ − Φ Φ +

⎡ ⎤Φ Φ Φ Φ + Φ Φ⎣ ⎦
       (1)

 
where [KU] is the fitted stiffness matrix of order nxn ; [KA] is the condensed analytical stiffness matrix of order 
nxn ; [ΦX] is the experimental modal matrix of order mxn  with m n≤ ; [ωX

2], of size mxm  is a diagonal 
matrix whose elements are the square value of the angular frequencies; [MA] is the nxn  mass matrix. 
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4. THE TRANSFORMATION MATRIX METHOD 
 
In figure 1, the flow chart of the Transformation Matrix method algorithm, TMm, to detect damage is shown 
(Galiote and Escobar, 2006). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Algorithm of the TMm for detection of damage in structures (Galiote and Escobar, 2006). 
 
5. CALIBRATION OF THE TRANSFORMATION MATRIX METHOD 
 
In order to calibrate TMm, the structure of the Mass Transport System building, STC, was studied (Martinez, 2007). 
This was a reinforced concrete building damaged during the September 1985 earthquakes in Mexico City. It was 
finally demolished. The building had frames in the longitudinal direction and shear walls in the transverse one. 
Thus, an inner frame was analyzed (figure 2). 
Dimensions of beams were 40x90 cm in all floors; outer columns in all storeys and inner columns in storeys one 
and two, 50x90 cm; storeys three and four, columns of 50x80 cm; storeys five and six, 50x70 cm; storeys seven to 
ten, 50x60 cm. The mass of storeys one to the nine is 15 t-m/s2, and of storey ten is 12 t-m/s2. An elastic modulus of 
221360 kg/cm2 was considered. 
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Figure 2. STC frame studied. 

 
In order to evaluate the effect of incomplete modal information on TMm, the damage state of figure 3 was 
simulated. In this figure, the percentage of the simulated loss of stiffness of the structural elements is indicated. 
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Figure 3. Simulated damage in the STC frame. 

 
Figure 4 shows that the results of the TMm are exact when the modal information is complete. The precision of the 
method increases as the amount of modal shapes and vibration frequencies, used in the Baruch and Bar-Itzhack 
equation, is increased. 
In figure 5 the same influence of mode shapes and frequencies can be observed. Relative error of the terms of the 
diagonal of the stiffness matrix of the structure with damage, fitted with the Baruch and Bar-Itzhack equation, with 
different amount of modal shapes and vibration frequencies, is presented. It can bee seen that as more modal shapes 
and vibration frequencies were included in the calculation, the error decreased. In this case, element K(2,2) 
presented the greatest value of the relative error. 
 
 



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 

16 12 1

53

16

32

19 9

7424

29

5

7

17

26

 
  a) First mode and vibration       b) Modes and frequencies         c) Modes and frequencies  
         Frequency.                     1 and 2.                       1 to 3. 

37

10 28 11

18

74

59

40 30

10 20 50 15

damaged element identified

identified not damaged element

damaged element not identified

 
   d) Modes and frequencies            e) All modes and frequencies 
            1 to 5 

Figure 4. Detected damage in the STC frame with TMm by using different amount of modal shapes and vibration 
frequencies. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Relative error in the terms of the diagonal of the stiffness matrix of the damaged structure reconstructed 
with the Baruch and Bar-Itzhack equation. 
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Thus, the errors in damage detection with TMm are due to the approach used for the fitting of the stiffness matrix of 
the structure. In order to tackle this issue, two matrices of corrective factors were proposed and evaluated 
(Mendoza, 2007). The corrective factors matrix M1 was obtained empirically and is defined as: 
 

( )

( )

2 2 2
1 2

2 2 2
1 2
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where n is the number of primary degrees of freedom of the structure (in this case, the number of storeys); i and j
the row and column of the matrix, respectively. 
The second corrective factors matrix M2 was obtained from the covariance among a group of data. For instance, if A
is a matrix of order mxn, its covariances matrix is (Jennings, 1992): 
 

1
1

TC X X
m

=
−

                             (3)

 
where m it is the number of rows of matrix X which is computed with the average of the values contained in each 
column of A, subtracting from each value of the column, the average of the same one. Matrix C is an nxn symmetric 
matrix. In order to obtain the correlation matrix of A, the scaled matrix XT is needed. Thus, the matrix of corrective 
factors is obtained as (Mendoza, 2007): 
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                             (4)

 
where T

mX  is matrix X scaled. 
These matrices of adjustment factors were used for the different structural models. M1 provided better results when 
applied to regular plane frames and M2 to irregular (Mendoza, 2007). For the case of frame STC the matrix of 
adjustment factors M1 was used. 
In order to exemplify the correction of the matrix of reconstructed stiffness, the matrix of adjustment factors was 
applied to the matrices reconstructed with modes 1, 1 and 2, 1 to 3 and 1 to 5, since generally, vibration tests of real 
structures only the first four or five modes can be obtained with precision (Galiote, 2006). 
In figure 6 the damage calculated with TMm is presented. It can be observed that when fitted the stiffness matrix 
using different number of modes and vibration frequencies and corrected with the matrix M1, the location of 
damaged elements improved and the obtained magnitude presented variations of loss of stiffness between 1 and 
10% with respect to the simulated damage. 
Figure 6a, presents the damage of frame STC calculated with TMm using the first mode and vibration frequency 
when the matrix of adjustment of reconstructed stiffness was used. It can be seen that five damaged elements were 
detected, a beam was not detected and three not damaged elements with percentage of loss of stiffness smaller than 
2% were located. 
Damage obtained using only TMm with the first two modes and frequencies of vibration and the matrix of 
reconstructed stiffness is presented in figure 6b. It is possible to observe that all the damaged elements were 
detected and additionally five elements no damaged with percentage smaller than 10%. 
When TMm with the first three modes and frequencies of vibration was used, with the stiffness matrix 
reconstructed, five out of the six elements damaged were located with percentage of stiffness loss very 
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approximated to the simulated damage (figure 3). The element that was not detected was a beam and elements no
damaged with percentage of damage lower than 7% were also detected. 
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Figure 6. Damage detected with TMm in frame STC using different amount of modes and vibration frequencies to 

reconstruct the stiffness matrix of the structure with damage. 
 
When TMm with the first three modes and frequencies of vibration was used, with the matrix of reconstructed 
stiffness fit, five out of the six elements damaged were located with percentage of loss of stiffness very 
approximated to the simulated damage (figure 3). The element that was not detected is a beam and elements 
non-damaged were detected with percentage of damage lower than 7%. 
Figure 6d presents damage calculated with TMm when fitted the stiffness matrix reconstructed with the first five 
modes and vibration frequencies and the matrix M1. In this case, the magnitude of the calculated damage presented 
variations of loss of stiffness between 1 and 7% with respect to the simulated damage. A damaged beam was not 
detected. In addition, not damaged elements were located. 
 
6. CONCLUSIONS 
 
The location and estimation of damage in structures by means of changes in its dynamic characteristics was studied. 
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In order to do this, the Transformation Matrix method, TMm, to locate and estimate structural damage, defined as 
the loss of stiffness of the structural and nonstructural elements in buildings modeled in two and three dimensions, 
was proposed. The location and estimation of the magnitude of the damage in the elements of the structures were 
made in independent form for each one of them. 
The effect of non-complete modal information on the damage detection of damage by using on the TMm, was 
studied. 
From the obtained results, it can be concluded that the TMm locates the damaged elements of a structure and 
determines correctly its magnitude of damage, expressed as a percentage of the loss of stiffness. 
The cases presented here are part of a project which looks for establishing the relationship between the damage at 
local level of the structural elements, expressed as loss of stiffness, with the physical state of a structure subjected to 
earthquakes. 
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