
The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 

On the earthquake input model with multiple support excitations 

D.S. Li
1
, H.N. Li

2
, S.Y. Xiao

3
 and G.X. Wang

3
 

1
 Lecturer, Dept. of Civil Engineering. Dalian University of Technology, 116023 China 

2 
Professor, Dept. of Civil Engineering. Dalian University of Technology, 116023 China  

3 
Associate Professor, Dept. of Civil Engineering. Dalian University of Technology, 116023 China  

Email: dsli@dlut.edu.cn 

ABSTRACT : 

The paper discusses the earthquake input model with multiple support excitations and its apparent discrepancy
with the earthquake input model with uniform ground motion. When the excitations at the multiple supports of
a structure are identical, both models agree with each other exactly when expressed in absolute displacement
form despite their superfluous inconsistency. The key factors are embedded in the partitioned stiffness and
damping matrices, in which the superstructure related terms can be mapped to the support related terms.
Therefore, the effective earthquake forces in both models can be derived to be equivalent and the apparent 
discrepancy existing in both models is resolved. Furthermore, the earthquake force transferring mechanism
from the foundation to the upper structure is exposed in details.  
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1. INTRODUCTION  
 
It is well known that the governing equation of motion for a structure with Multiple Degrees of Freedom
(MDOFs) due to a uniform ground motion as followings (Clough, 1995), 
 

gumkuucum &&&&& −=++                                   (1.1)
 
where ,  and are mass, damping and stiffness matrices, respectively. is a displacement vector of the 
structure components and the dot operator above the  represents the first derivative ( u ) and the secon

m c k u
u & d

derivative ( u ). denotes the uniform ground motion acceleration.  && gu&&
 
Eqn.1.1 is the earthquake input model for a structure with uniform ground motion and noted hereinafter as 
Model 1. It seems that all the masses experience the earthquake accelerations at the same time in Model 1, and 
there is no term allowing for the consideration of the earthquake wave transferring from the base of a structure 
to its upper parts, which is not reasonable at first sight. On the other hand, the governing equation of motion for 
a large extended structure subjected to non-uniform ground motion can be written as (Chopra, 2001), 
 

ggg uccrumrkuucum &&&&&& )( +−−=++                          (1.2)
 
where is the influence matrix describing the influence of support displacements on the structural
displacements, . In addition, the variables in Eqn.1.2 are defined in partitioned form for a general 
MDOF structure as, 

r
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where the displacement vector is divided into two parts, (1) contains the m DOFs of the superstructure;
and (2) contains the s components of the support displacement as illustrated in Figure 1. The variables with 

subscript  represent those terms associated with ground support motion. For instance,  is the partitione

tu
gu

g gc d 
damping term connected to the ground. 
 

 
Figure 1 A general MDOF structure subjected to non-uniform ground motion 

 
Eqn.1.2 is the earthquake input mode1 for a structure subjected to non-uniform ground motion and termed as 
Model 2 afterwards for the convenience of notation. Moreover, the damping related terms in the r.h.s. of
Eqn.1.2 is usually neglected. For damping matrices proportional to the stiffness matrices, such simplification is
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exact although the proportionality assumption is not realistic. Even for arbitrary damping, the simplification is
permissible since the damping terms are generally relative small compared to the inertia terms.  
 
Therefore, both Model 1 and Model 2 are available to compute the responses of a structure undergoing uniform 
ground motion. It is naturally necessary that Model 1 and Model 2 agree with each other. Otherwise, there must 
be one model that is wrong. In other words, Eqn.1.2 should be reduced to Eqn.1.1 when the excitations are 
identical at the supports if both models are correct. At first sight, it appears that Eqn.1.2 differs a great deal 
from Eqn.1.1, especially in the fact that a velocity related term in the r.h.s. of Eqn.1.2 is included. Even one 
considers that the damping term is relatively insignificant compared to the inertia term in the r.h.s. of Eqn.1.2
and can be ignored, both equations are apparently inconsistent.  
 
The paper deals with this apparent discrepancy. In section 1, a single DOF structure is considered and the
agreement of Model 1 and Model 2 in the application to this simple example is demonstrated. Section 2 
provides three typical structures illustrating the agreement of Model 1 and Model 2 in three different cases. The 
intuition gleaned from Section 2 is applied to a general structure subjected to uniform support excitation and is 
extended to prove the consistency of both models. Furthermore, a latent relationship between the superstructure
related terms and the support related terms in the stiffness matrix are revealed, which is critical in verifying the 
consistency of Model 1 and Model 2. In the remainder of the paper, uniform ground motion is treated, if not 
explicitly stated otherwise. 
 

  
Figure 2 Uniform ground motion model Figure 3 Non-uniform ground motion model 

 
 
2. AGREEMENT OF BOTH MODELS IN A SIMPLE SDOF STRUCTURE  
 
The apparent discrepancy between Model 1 and Model 2 is superfluous when one examines the background and 
the physical significance of the  in both models in more details. In Eqn.1.1,  denotes the displacement ou u f
a supported mass relative to the ground as shown in Figure 2, and the total displacement of the mass can be 
expressed as, 
 

g
t uuu +=1                                     (2.1)

 
On the other hand, the  in Eqn. 1.2 is the dynamic displacement besides a pseudo-static part, , and the 
total displacement of the mass is formed by, 

u su

 
st uuu +=2                                     (2.2)

 
where, the pseudo-static part, , represents the vector of structural displacements due to static application osu f
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the support displacement at each time instant and is related to the support displacement through the 

relationship, , as shown in Figure 3. In addition, the velocity related terms appeared in the 

r.h.s of Eqn.1.2 is due to the fact that the pseudo-static displacement, , does not equal to the groun

gu

gkk−−
gu

gg
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su d 
acceleration, , and there is a coupling effect in the damping and stiffness mechanism transferring the
earthquake force to the upper structure. 
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A single spring-mass structure can be employed to illustrate the basic concepts and assumptions in both models. 
Both Figure 2 and 3 illustrate such a simple SDOF structure. In Model 2, The stiffness and damping matrices
can be partitioned as a superstructure part and a support part as follows, 
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The influence matrix in Model 2 is then simplified as, . Consequently, the effective 

force in the r.h.s of Eqn.1.2 can be reduced to, p
Ikkr =−−=−= −1 (kg

gt ccIumI && ggeff umu &&& −=−+−−= ))()(2
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gg
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. Moreover, the 

absolute or total displacement of the mass can be written as, . uuu +=+ g

 
As the same time, the effective force in the r.h.s of Eqn.1.1 is still geff t ump &&−=)(1 , and the total displacement

of the mass is . Equivalent effective forces in Model 1 and Model 2 lead to the same absolute total 

displacements of the mass computed by both models, i.e., . Therefore, Model 2 agrees with Model 1 at 
least for this SDOF structure subjected to uniform ground motion. 

uuu += g
t
1

tt
12 uu =

 
 
3. AGREEMENT OF BOTH MODELS IN TWO TYPICAL MDOF STRUCTURES  
 
Section 2 clarifies the basic concepts and assumptions made in Model 1 and Model 2, and has arrived at a 
primary conclusion that both models agree with each other for a simple SDOF structure shown in Figure 2 and 
3. Naturally, a question arises. Is such consistency still true for more complicated structures? In the following,
the problem is discussed and treated for three different cases.  
 

 

 
 

Figure 4 A 2-DOF structure with 
one support 

Figure 5 A 2-DOF structure with 
two supports 

Figure 6 A 5-DOF structure with 3 
supports 

 
3.1. Governing equation of motion in absolute displacement form in both models 
For the convenience of our analysis, both Eqn.1.1 and Eqn.1.2 are first expressed in the follows in absolute 
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displacements with reference to the same global static reference framework, for instance, a remote static earth 
block. Although there is no absolute static reference framework in the world, one can find a relative one
anyway. Substituting Eqn.2.1 into Eqn.1.1, the governing equation of motion in absolute displacement form can 
be written as, 
 

gg
ttt kuuckuucum +=++ &&&& 111                               (3.1)

 
Likewise, Eqn.1.2 can be expressed in absolute displacement form with the introduction of Eqn.2.2 as follows,
 

gggg
ttt ukuckuucum −−=++ &&&& 222                             (3.2)

Inconsistency between Model 1 and Model 2 is seemingly obvious since the and in Eqn.3.2 have 
different dimensions from the  and 

gc gk
c k in Eqn.3.1. Can we then draw a conclusion that Model 2 contradicts

Model 1? To dwell the problem in further details, three typical structures are examined to explore the 
intricacies. Case 1 is a 2-DOF structure with one support shown in Figure 4, Figure 5 illustrates a 2-DOF 
structure with two supports, and a more general 5-DOF structure with 3 supports shown in Figure 6 are further 
considered. The three cases represent three typical structures. Both Model 1 and Model 2 are to be applied to 
the three cases and to be questioned about their consistency.  
 
3.2. Agreement of both models in Case 1 
In case 1, the effective force in Model 1, i.e. the r.h.s. of Eqn.3.1 is, 
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On the other hand, the partitioned damping and stiffness matrices in Model 2 is, 
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Consequently, the effective force in Model 2, i.e. the r.h.s. of Eqn.3.2 is, 
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Therefore, the effective force in Model 1 equals exactly to the effective force in Model 2 when the structure in 
both models are subjected to uniform ground motion. As a result, Model 2 agrees with Model 1 in Case 1.  
 
Furthermore, the physical significance of both Eqn.3.3 and Eqn.3.4 are interesting. Both equations show that
only the first mass is experiencing the earthquake velocity and displacement. The mass not directly connected 
to the ground bears no direct earthquake forces, but reacted to the ground motion though the coupling of
stiffness and damping devices between the masses, which abbeys common senses. 
 
3.3. Agreement of both models in Case 2 
In case 2, the effective force in Model 1, i.e. the r.h.s. of Eqn.3.1 can be simplified as follows, 
 



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 

gg
g

g

g

g

g

g

g

g
eff

u
k
k

u
c
c

u
u

k
k

u
u

c
c

u
u

kkk
kkk

u
u

ccc
ccc

t

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+−
−+

+⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+−
−+

=

2

1

2

1

2

1

2

1

323

331

323

331
1

0
0

0
0

)(

&
&

&

&

&
p

                (3.5)

 
On the other hand, the partitioned damping and stiffness matrices in Model 2 is, 
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Consequently, the effective force in Model 2, i.e. the r.h.s. of Eqn.3.2 is, 
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Therefore, Model 2 agrees with Model 1 in Case 2. In this case, both masses are directly connected to the 
ground and bear the same earthquake velocity and displacement simultaneously. 
 
3.4. Agreement of both models in Case 3 
For the saving of space, only the stiffness terms in both models are treated explicitly in this subsection and the 
following Section 4. Similar relationship of damping terms exists like that of stiffness terms, and the derivations 
to the stiffness terms can be applied to damping terms with minor modifications. In this sense, the damping 
components and stiffness components in the governing equation of motion in both Eqn.3.1 and 3.2 can be 
regarded as equivalent.  
 
For the structure shown in Figure 6, the effective force in Model 1, i.e. the r.h.s. of Eqn.3.1 is, 
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On the other hand, the partitioned stiffness matrices in Model 2 is, 
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The effective force term in the r.h.s of Eqn(3.2) can then be expressed as,  
 

)(

0
0

0
01

1
1

000
000

00
00
00

)( 13

2

1

3

2

1

3

2

1

2 tuc
c
c

uk
k
k

uuk
k

k

t effggggeff pcp =

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=−
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−

−= &         (3.8)

 
Therefore, Model 2 agrees also with Model 1 in this case. In this case, three masses are directly connected to 
the ground. It is interesting to note that only the ground-directly-connected masses bear the earthquake motions 
in Eqn.3.7 and Eqn.3.8. Similar to case 1, the superstructure masses which are not directly connected to the 
ground bears no direct earthquake forces, but reacted to the ground motion though the coupling of stiffness and
damping devices between the masses. The following observations are also of interest. When an earthquake 
comes, the land under the structure moves a bit distance at first and the elastic and damping mechanism directly
connected to the foundation can sense immediately the change and reflect in the restoration forces in the r.h.s.
of both Eqn.3.7 and Eqn.3.8. At this moment the ground-directly-connected masses are still at rest, therefore, 
there is no acceleration related terms in the r.h.s. of both equations. Only after the ground-directly-connected 
masses have moved, the other masses located on the superstructure react as what ground-directly-connected 
masses have experienced like a chain reaction.    
 
 
4. AGREEMENT OF BOTH MODELS IN GENERAL MDOF STRUCTURES 
 
With the primary conclusion that Model 1 agrees to Model 2 for the three typical cases drawn in Section 3, the 
same rationale can be extended to a general MDOF structure with multiple supports. Without loss of generality, 
it is assumed here that there are m masses connected to the foundation through s supports according to Eqn.1.3.
When the stiffness matrix is partitioned as that of Eqn.1.3, the effective force in Model 1, i.e. the r.h.s. of 
Eqn.3.1 turns out to be, 
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Note that the damping term has a similar relationship as that of the elastic force term in the r.h.s ogguc & f 
Eqn.(3.1) and is dropped here for the convenience of clearance. The sum of the stiffness connected to a mass 
along a row equals to 0 if the mass is not directly fixed to the foundation, which is a basic principle in finite 
element analysis. This relationship roots back also to the Betti’s principle, or even Newton’s Third Law. For 
those masses directly connected to the foundation, the sum of the stiffness along a row equals to the connection
stiffness. It is because that the connection point mass at the foundation is assumed to zero and has been 
removed from system matrices, which should be a complete one if all the zero masses are included and has zero
natural frequencies.    
 
On the other hand, the effective force term in the r.h.s of Eqn(3.2) can be rewritten as,  
 

)(

0

0
1

1
1

000

000
00

00
00

)( 1

1

2

1

1

3

2

1

2 tuk

k
k

uk
k

k

t effg

m

sg

s

sm

ggeff pukp =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−

−=−=

×

×

×

M

M

M
MMM

          (4.2)

When the damping terms are included, similar relationships can be derived likewise. Therefore, the effective 
force in Model 1 equals exactly to the effective force in Model 2 for all structures, and Model 2 are completely 
consistent with Model 1. Furthermore, the earthquake force transferring mechanism from the foundation to the 
upper structure is clearly explained when the governing equation of motion is written in absolute displacement 
form. Namely, only the masses directly connected to the foundation bears the earthquake force and the other 
masses react to the earthquake force through the coupling stiffness and damping devices in between. 
 
 
5. CONLUSIIONS 
 
The paper resolved an apparent discrepancy between the uniform earthquake input model and another model
for multiple support excitations by analyzing both models in absolute reference framework. Furthermore, the
inherent mapping relationship between the stiffness terms related to the superstructure and the stiffness terms
related to the foundation for the earthquake input model with multiple support excitations is revealed and used 
to prove that the effective earthquake forces in both models are equivalent, which results in the same structural 
responses if computed by both models. Therefore, both models are consistent when the ground motions at the 
different supports of a structure are uniform. 
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