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ABSTRACT: 

 
The dynamic seismic behavior of nonstructural components attached to elastic-plastic load-bearing structures is 
assessed. The assessment is based on floor spectra of two-degree-of-freedom (2DOF) systems with assigned 
ductility of the supporting structure. Frame structures are transformed into equivalent single-degree-of-freedom 
(ESDOF) systems, and thus floor spectra of 2DOF systems become applicable for the prediction of the seismic 
peak response of vibratory nonstructural components. The utilized floor spectra are the outcome of a parametric 
study involving a set of 40 ordinary ground motions with strong motion characteristics. Example problems show 
the capability of this method to predict the seismic response of nonstructural elements with sufficient accuracy. 
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1. INTRODUCTION 

 
Strong motion earthquakes of the last decades have left the serviceability of many buildings substantially 
impaired, because nonstructural components were damaged. These components such as large antennas, supply 
lines, electrical equipment, etc., are exposed to the amplified seismic response of the load-bearing structure, and 
thus they are vulnerable to seismic failure, Villaverde (2004). The development of methods for the rational 
quantification of seismic effects on vibration-prone nonstructural elements is a scope of ongoing research, see 
e.g. Medina et al. (2006). Most of the publications deal with the prediction of the seismic behavior of 
nonstructural components on unlimited elastic load-bearing structures. However, modern seismic design 
standards allow targeted inelastic deformations in load-bearing structures when subjected to severe earthquake 
excitations. The aim of this study is to develop a simple methodology for the prediction of the seismic peak 
response of nonstructural components taking into account elastic-plastic deformations of the load-bearing 
structure. Floor spectra for simple oscillators attached to single-degree-of-freedom (SDOF) primary structures 
with assigned ductilities are derived. These spectra are utilized to estimate the peak response of nonstructural 
components mounted on multi-degree-of freedom (MDOF) frame structures. Subsequently, nonstructural 
components are denoted alternatively as secondary structures, and primary structure is a synonym for the 
load-bearing structure. 
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Figure 1 (a) SDOF inelastic primary structure equipped with elastic SDOF secondary structure; (b) Bilinear 
cyclic behavior of the spring of the primary structure 
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2. INELASTIC SINGLE-DEGREE-OF-FREEDOM PRIMARY STRUCTURES 

 

2.1. Structural model and equations of motion 

 
In the first part of this study the primary structure is modeled as an elastic-plastic SDOF oscillator with mass 

 
mp , spring with initial stiffness 

 
kp , and viscous damper with parameter 

 
cp , see Figure 1(a). The spring 

exhibits bilinear cyclic behavior as shown in Figure 1(b), and its post-yielding stiffness is characterized by the 
hardening ratio . An additional elastic SDOF oscillator with mass 

 
m

s
, stiffness 

 
ks , and viscous damping 

parameter 
 
c

s
 serves as vibration prone secondary structure. Both oscillators are connected in series, and they 

represent a single dynamic unit with two-degrees-of-freedom (2DOF), see Figure 1(a). The base of the primary 
structure is subjected to the ground acceleration 

  
wg , which induces time varying displacements (relative to the 

base) 
 
xp  and 

 
x

s
of the primary and secondary mass, respectively. The equations of motions of the 

non-classically damped inelastic 2DOF system are derived as  
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where 
 

 
  
m = ms / mp  (2) 

 
denotes the secondary to primary mass ratio, which is in general significantly smaller than one:    m 1 . The 
decoupled natural circular frequencies 

 p , 
 s

 and damping coefficients 
 p , 

 s
 of both substructures are: 

 

 
  s = ks / ms  ,  

  
p = kp / mp  ,  

  
p = cp / 2 pmp( )  ,  

  
s
= c

s
/ 2

s
m

s( )  (3) 

 

 
xp

pl
 denotes the plastic part of deformation of 

 
xp . The characteristic response parameters of a system 

according to Figure 1(a) are the mass ratio  m , damping coefficients 
 p , 

 s
, periods of the decoupled 

substructures 
  
Ts = 2 / s , 

  
Tp = 2 / p , strain hardening coefficient , and ductility µ  of the primary 

structure. Ductility µ  is defined as the ratio of the absolute maximum relative displacement 
  
xpmax  of mass 

 
mp  during a single time history analysis related to the corresponding displacement 

 
xpy  at onset of yielding, 

 

 
  
µ = xpmax / xpy  (4) 
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Figure 2 (a) Median displacement floor spectrum, and (b) median acceleration floor spectrum for inelastic 
2DOF systems with the following parameters:   m = 0.05 , 

  p = 0.05 , 
  s

= 0.005 , 
 
µ = 4 ,  = 0.03  
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Figure 3 Median displacement floor spectra for inelastic 2DOF systems with periods of the primary structure 

  
Tp = 1.20s  and 

  
Tp = 2.40s , and parameters   m = 0.05 , 

  p = 0.05 , 
  s

= 0.005 , 
 
µ = 4 ,  = 0.03  
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Figure 4 Median acceleration floor spectra for inelastic 2DOF systems with periods of the primary structure 

  
Tp = 1.20s  and 

  
Tp = 2.40s , and parameters   m = 0.05 , 

  p = 0.05 , 
  s

= 0.005 , 
 
µ = 4 ,  = 0.03  

 
 

2.2. Floor spectra for oscillators on inelastic single-degree-of-freedom primary structures 
 

Floor spectra are derived for simple oscillators mounted on primary structures with preassigned ductilities. 
These spectra are denoted as 2DOF floor spectra. The seismic input is based on a set of 40 ordinary ground 
motions, which were recorded in California on NEHRP site class D during earthquakes of moment magnitude 
between 6.5 and 7 and closest distance to the fault rupture between 13 km and 40 km. This set of records has 
strong motion duration characteristics insensitive to magnitude and distance. Details are given by Medina and 
Krawinkler (2003). For each 2DOF system with fixed parameters  m , 

 
Tp , 

 
Ts , 

 p , 
 s

, µ ,  and each 
earthquake record time history analyses are performed. Thereby, the yield strength of the primary spring has to 
be determined iteratively to provide for the preassigned ductility. The peak displacement gives one value of the 
displacement floor spectrum, the peak acceleration renders one value of the acceleration floor spectrum, 
 

 
   
Fds,i = max xs i

,     Fas,i = max xg + xs i
  ,   i = 1,...,40  (5) 

 

The statistical evaluation of the peak responses from the 40 ground motions yield median displacement floor 
spectra 

  
Fds (med) , and median acceleration floor spectra 

  
Fas (med) .  Floor spectra are presented in three- 
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Figure 5 (a) Generic inelastic multi-story frame structure equipped with elastic SDOF secondary structure;  
(b) Bilinear cyclic behavior of the rotational springs 

 
dimensional form as function of the decoupled periods 

 
Tp  and 

 
Ts  of the primary and the secondary system, 

respectively. Examples are shown in Figure 2 for inelastic 2DOF structures with the parameters   m = 0.05 , 

  p = 0.05 , 
  s

= 0.005 ,  = 0.03 , and a primary structure ductility µ  of 4. For periods of the primary 
structure 

  
Tp = 1.20s  and 

  
Tp = 2.40s  median displacement and median acceleration floor spectra are shown 

two-dimensionally in Figures 3 and 4. They represent a vertical section of Figures 2 at these periods, depicted 
by dashed lines. In Adam and Furtmüller (2008) the outcomes of an intensive study on 2DOF floor spectra 
including inelastic deformations of the primary structure are presented. 
 

 

3. INELASTIC MULTI-DEGREE-OF-FREEDOM PRIMARY STRUCTURES 

 

3.1. Structural model and equations of motion 
 
In the second part of this study 2DOF floor spectra are utilized to estimate the response of nonstructural 
components attached to elastic-plastic regular plane multi-story moment resisting frame structures. Starting 
point of the developed methodology are the coupled equations of motion of a frame structure with N stories and 
lumped masses at its story corners as shown in Figure 5(a), whose kth floor is equipped with a SDOF vibratory 
secondary structure of mass 

 
m

s
, stiffness 

 
ks , and viscous damping parameter 

 
c

s
 (Adam and Fotiu, 2000) 

 

 

   

Mx +Cx +K x G
p ks xs xk( )gk cs xs xk( )gk = Me xg

msxs + csxs + ksxs ksxk csxk = msxg

 (6) 

 
In the model of Figure 5(a) inelastic deformations are confined to the rotational springs located at the base and 
at both ends of the beams. The horizontal story displacements 

  
xi , i = 1,..., N , relative to the base are the N 

dynamic degrees of freedom of the primary structure, which are assembled in vector  x . Matrix  G  is the 
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influence matrix of the plastic spring rotations expressed by the vector 

 
p .  M ,  C ,  K  are the mass, 

damping, and initial stiffness matrix, respectively, of the frame structure. Influence vector  e  represents the 
displacements of the primary masses resulting from a static unit ground displacement in direction of the seismic 
excitation. The kth component of influence vector 

  
gk  is one with all other components being zero. This vector 

identifies the location of the nonstructural element in the kth story of the primary structure. The horizontal 
displacement 

 
x

s
 of the mass of the secondary system with respect to the base represents the (  N +1 )th 

degree-of-freedom of the coupled system. 
 
 

3.2. Approximation of floor spectra for oscillators on inelastic multi-story frame structures 

 
Basic assumption of the following considerations is that the dynamic properties of the frame structure can be 
described by an equivalent SDOF (ESDOF) system. In the ESDOF system approximation the deflection shape 
of the frame structure follows a time-independent shape vector  regardless of the magnitude of deformation, 
Fajfar (2002). Thus, deformation vector  x  of the primary structure is a function of the roof displacement 

 
xN , 

 

 
  
x = xN  ,  

  N = 1     (7) 

 
After pre-multiplication of the upper equation (6) by the transposed shape vector 

 

T  equation (7) transforms 
equations (6) into the following coupled equations of motion, 
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In (8)   m

*
 is the equivalent mass ratio,  

*
 denotes the equivalent circular frequency of the ESDOF primary 

structure, and  
*

 represents the equivalent effective participation factor, 
 

 
   
m

*
= ms / m

*
 ,  

*
= k

*
/ m

*
 ,   

*
=

T
Me / m

*
 ,   m

*
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T
M  ,   k

*
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T
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  m
*

 is the equivalent mass and   k
*

 the equivalent stiffness of the ESDOF system. A further approximation of 
the ESDOF system concerns the inelastic deformations. It is assumed that the distributed plastic deformations 
can be expressed in full analogy to a SDOF system, i.e. 
 

 
   

T
K x G

p( ) = k* xN xN
pl( )  (10) 

 
and furthermore, that hysteretic cyclic behavior of the ESDOF system complies with global hysteretic cyclic 
behavior of the frame structure. Since the equations of motions of the ESDOF primary system coupled with a 
SDOF nonstructural component, equations (8), and their counterparts for the system of Figure 1(a), equations 
(1), have both two degrees-of-freedom it may be concluded that 2DOF floor spectra derived in the first part of 
this study can also be applied for the prediction of floor spectra of SDOF secondary systems mounted on regular 
frame structures. Instead of the mass ratio  m  according to equation (2) the effective equivalent mass ratio  

 

 
  

m
*
= ms k

2
/ m

*
= m

*
k
2( )  (11) 

 
must be employed. Moreover, different weighting of the excitation intensity of the primary structure must be 
considered. While the ground acceleration 

  
wg  of the upper equation (8) is multiplied by the effective 

participation factor  
*

, the excitation of the corresponding equation of the “real” 2DOF system is just 
  
wg , 
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compare equations (1) and (8). Hence, 2DOF floor spectra must be modified before they may be applied for 
estimating the floor response of secondary structures mounted on MDOF structures. For a rigid secondary 
system (

  
Ts = 0 ) the response of this substructure is identical to the response of the primary structure at the 

attachment point, and hence, the spectral values of 2DOF floor response spectra are to be multiplied by  
*

. At 
tuned periods 

  
T

*
Ts ,   T

*
= 2 /

* , interaction between 
 
xN  and 

 
x

s
 is strong. In particular, the secondary 

response 
 
x

s
 is affected by 

 
xN , because the corresponding primary mass   m

*
 is in general much larger than 

the secondary mass 
 
m

s
. Thus, it is reasonable to weight 2DOF floor spectra by  

*
 for 

  
T

*
Ts . However, for 

systems with 
   
Ts T

*  the primary structure behaves much more rigid compared to the secondary element, and 
thus, the response depends mainly on the parameters of this element, which is hardly affected by  

*
. It is 

proposed to multiply the 2DOF floor spectra by a period depending effective participation factor 
  

*(Ts ) , 
which is found from empirical considerations, see Figure 6. Up to the period 

  
3 / 2Ts  

  
*(Ts )  complies with 

the absolute value of  
*

. Afterwards follows a linear ramp, which ends at   3T
*

. 
  

*(Ts ) = 1  for 
  
Ts 3T

* .  

 

1
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Figure 6 Period depending effective participation factor 

 
A further difference between equations (1) and (8) concerns the damping matrix and the stiffness matrix: In (8) 
the off-diagonal terms are multiplied by 

 k , and the second part of the upper diagonal terms by 
  k

2 . If the 
secondary structure is not mounted on the roof (

  k N (= 1) ), the application of 2DOF spectra may be another 
source of inaccuracy for the prediction of the secondary peak response. 

 

 

3.3. Application and assessment 

 
In the following example problems generic planar multi-story single-bay frames of 12 stories as shown in 
Figure 5(a) serve as load-bearing structure. They are composed of elastic columns, rigid beams, and rotational 
springs at both ends of the beams (Medina et al., 2006). Identical point masses are assigned to each joint of the 
particular frame. The fundamental mode shape of the MDOF frames follows a straight line. Global cyclic 
response under earthquake excitation is represented by non-degrading bilinear hysteretic behavior of the 
rotational springs, see Figure 5(b). Strain hardening ratio  is 0.03 for all springs. Viscous damping is 
considered by means of 5% percent modal damping for all modes of the frame structure with 12 dynamic 
degrees-of-freedom. The fundamental period of vibration T1  is 1.2 s for a stiff, and 2.4 s for a more flexible 
frame structure. On top of the frame a vibratory secondary structure is attached, which is modeled as an elastic 
SDOF oscillator with 

  s
= 0.005 . For the ESDOF system of the frame structure the fundamental mode shape is 

utilized as shape vector. Thus, the fundamental period of the frame structure and the period of the ESDOF 
primary structure are identical. The effective equivalent modal mass ratio   m

*
 according to equation (11) is 

0.05. The target ductility µ  of the frame is 4. For calibration of the yield moments 
 
Miy  the yield strength 

 
f py  of the “real” 2DOF system (which leads to a ductility of 4) and the base shear of the ESDOF system at 

onset of yield are equated. Subsequently, the yield rotations of the springs are tuned in such a way that a 
pushover analysis under a linear design load pattern leads to a simultaneous onset of yielding at all springs. 
 
In Figures 7 and 8 median displacement and acceleration floor spectra, respectively, are presented for the stiff 
frame with a fundamental period of 

  
T1 = 1.2s . The black full line corresponds to the results utilizing the 

complete set of equations (6), i.e. interaction between the primary and secondary substructures is considered. 
Additionally, the results of the simplified analysis based on an ESDOF system and 2DOF floor spectra for a 
period of 

  
Tp = 1.2s  are displayed. These spectra are presented in Figures 3 and 4, since their underlying mass 

ratio and the effective mass ratio of the ESDOF system, and the substructure damping coefficients are identical. 
Multiplication of the 2DOF floor spectra by the period dependent effective participation coefficient according to 
Figure 6 leads to the simplified solution depicted in Figures 7 and 8 by thick gray lines.  It can be observed that 
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Figure 7 Median displacement floor spectra for a SDOF oscillator on a ductile 12 story frame structure 
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Figure 8 Median acceleration floor spectra for a SDOF oscillator on a ductile 12 story frame structure 
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Figure 9 Median displacement floor spectra for a SDOF oscillator on a ductile 12 story frame structure 
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Figure 10 Median acceleration floor spectra for a SDOF oscillator on a ductile 12 story frame structure 

 
the displacement floor spectrum is approximated in the entire period range with sufficient accuracy by modified 
2DOF floor spectra. For periods 

 
Ts  of the secondary structure larger than 

  
0.6s  the simplified methodology 

renders a satisfactory approximation of the acceleration floor spectrum shown in Figure 8. However, in the short 
period range the deviation from the “exact” peak acceleration is essential. Note, that ductile deformations of the 
primary structure lead to energy dissipation and period elongation, and thus, floor spectra of Figure 7 and 8 do 
not exhibit pronounced peaks at primary structure periods. Furthermore, the effect of interaction between the 
primary and secondary structure is examined. In Figures 7 and 8 floor spectra are shown, which are generated 
omitting coupling between the substructures. In such a decoupled analysis the input of the secondary structure is 
the seismic response of the stand-alone primary structure at its attachment point. The results verify that this 
simplified approach overestimates the actual response by a large amount when substructure periods become 
tuned. Thus, a decoupled analysis, which is common engineering practice, may lead to an over-conservative 
response prediction. Subsequently, floor spectra based on a more flexible 12 story frame structure with a 
fundamental vibration period of 

  
T1 = 2.40s  are shown in Figures 9 and 10. These floor spectra confirm the 

previous findings for the 
  
T1 = 1.20s  structure. 
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