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ABSTRACT : 

In this paper, the results obtained of the seismic analysis to Tepuxtepec’s dam are presented. Tepuxtepec dam 

was constructed in order to fulfill three functions, namely: power generation, flood control and to supply water 

for the irrigation to 3,680 ha in the region. The dam is located inside the Acambay graben. In spite of the fact that 

the majority of the earthquakes in Mexico are related directly to the tectonic plate’s movement, there are 

however, less frequent earthquakes that happen inside the continents, which magnitudes could be important.  

The Acambay graben is located in the central sector of the Mexican Volcanic Belt, which is one of a series of 

east-west–oriented grabens along the Chapala-Tula fault systems that practically follows the axis of the belt, and 

are thus interpreted as intra-arch tectonic depressions. The Acambay graben is responsible of earthquakes that 

occur near the Tepuxtepec’s dam. For this reason and considering number of years that Tepuxtepec’s dam has 

been in operation, LyFC (Government company) decided that it was necessary to perform a complete analysis of 

the structure, in order to determine its present factor of safety, considering current conditions of materials, the 

seismicity and the operation conditions, to which one the dam is subjected. The results will serve to define the 

necessary actions that LyFC needs to take, in order to improve the seismic behavior of the dam, since it is 

expected that dam will continue its operation for yet several years. 
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1. INTRODUCTION 
 

Tepuxtepec's dam was constructed in three stages, beginning in 1928 and ending in 1970. As a consequence of 

this, the dam is formed by several materials, principally of dry masonry and concrete. The dam has a height of 

47 m, a crest length and width of 675.0 m and 4.0 m, respectively and a capacity of the reservoirs of 585 hm3. 

Tepuxtepec's dam was constructed to realize three functions, which are: the avenues control, hydroelectric 

energy generation and the irrigation of approximately 3,680 hectares in the region of Lerma River. Given the 

importance that the dam has in the region, it has contemplated that continues working several years more, 

carrying out the functions for those that it was planned. For this reason, an stability analysis is necessary, taking 

into account the real material properties, the dam current configuration, and especially its location in the 

Transmexican Volcanic Belt (figure 1.1), since it is a geologically active zone, owing to the presence of normal 

faults in the region, that form The Acambay graben or an east-west intra arc tectonic depression in the central 

sector of Mexico. 

 

In November, 1912, the south side of Acambay graben, known as Pastores fault, moved vertically and released a 

high seismic energy (M=7), causing an important damages that affected a huge part of this region. This event 

known as Acambay's earthquake, had an epicenter in a geographical coordinates 19.93 N 99.83 W. In the same 

place other earthquakes were registered in 1915, 1916, 1947 and two in 1953 by magnitudes among 4.0 4.5. 

Suter et al. (1991) and Aguirre-Díaz et al.(1999) published a map showing the Acambay’s faults (figure 1), 

confirming that the dam was constructed inside Acambay graben. In 1979 there were registered three 

earthquakes (with magnitudes of 4.6, 5.0 and 5.3) in the zone near to the dam (Figueroa, 1970 and NGA, 2007). 

With this scenario, a detail analysis of seismic hazard was carried out in Tepuxtepec site, in order to obtain the 

maximum acceleration, which serves to generate seismic record. 
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Figure 1.1. Tepuxtepec´s dam location. 

 

In order to carry out the dam's stability analysis, several field investigations were done to obtain current 

characteristics. Besides, in the dam analysis was considered several hydrological conditions, different load cases 

(static and seismic analysis), as well as uplift pressures along the dam-foundation interface. The field 

investigations were: a) Topographic survey, including a reservoir bathymetric survey, b) Geotechnical 

investigations (including water chemical analysis and geological local study) and finally, c) A numerical 

analysis of the dam’s most critical sections. 

 

 

2. GEOTECHNICAL INVESTIGATION 
 

The geotechnical investigations are probably the most important activity in the stability analysis, since it is 

necessary to know the materials mechanical properties of the dam and the area of foundation, and its distribution 

inside the structures. For this reason a geotechnical exploration were planned in order to obtain samples and to 

determine the material mechanical properties (Figure 2.1). The geotechnical explorations server to characterize, 

as realistic as possible, the dam - foundation structures. 

 

 
Figure 2.1. Tepuxtepec´s dam borehole location. 
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Dam’s preliminary information indicates that it is formed for three materials mainly: dry masonry, masonry 

joined with mortar and concrete. In order to obtain the dam’s properties of the materials, five tests drilling and 

sampling were done: three ones on the dam’s crest (SMTX-1, SMTX-3 and SMTX-4 with depth of 15.10, 22.15 

and 11.50 m, respectively) and two ones on the foundation (SMTX-5 and SMTX-6, with depth of 27.0 and 

20.50 m respectively). SMTX-1 and SMTX-3 were carried out in dry masonry section; SMTX-4 was carried out 

in the graduated materials section. The last two tests were carried out in the downstream foundation’s rock 

section. 

 

Profile soil was determined using the results of the geotechnical exploration and laboratory data. On the other 

hand, the main section was obtained based on the topographic and bathymetric surveys. The foundation material 

used in the stability analysis was fractured basalt and healthy basalt (figure 2.2). 
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Figure 2.2. Critical dam section. 

 

 

3. TEPUXTEPEC DAM’S STABILITY ANALYSIS 
 

In order to assessment the safety of the Tepuxtepec dam, based on the geometric characteristics and materials’ 

properties, a limit equilibrium analysis was considered. Dam stability is evaluated in deterministic form, based 

on a factor of safety (FS) defined as the relation between the resistant forces and the imposed forces. The most 

critical mechanism of fault that in a stability analysis must review is rotational slip of a soil volume that is 

considered rigid. This soil moves downwards on a fault surface with semicircular trace. However, in the 

particular case of the Tepuxtepec dam analysis, a flat fault surface is considered too, since this fault might 

appear owing to the dam is majority of dry masonry, which could be represented like rock fill (Marsal and 

Reséndiz, 1975; IMTA, 2001). Pore pressure used in analysis is obtained, considering a steady flow, not confine, 

in two dimensions. The seismic forces are considered by means of equivalent horizontal forces equal to a 

fraction (seismic coefficient) of the weight of soil volume that can move. 

 

 

3.1. Stability analysis methods 
 

As mentioned, a limit equilibrium analysis was carried out. This method is widely used in a professional 

practice. Three different procedures based on this method were used in order to compare the results: Ordinary 

(Fellenius), modified Bishop and Spencer (Duncan, 1996; Abramson, 2002; USACE, 2004 and Krahn, 2004). 
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3.1.1 Ordinary Method 

 

It’s a simple method, since the normal and shear forces are neglected inside elements. For this reason, the 

bending moment must be fulfilled. This method used equation 1: 

 

1

1 2 3

1 1 1

{ tan }
n

i

i

n n n

i i i

c L N

FS

A A A




  

  



 



  

 
(3.1) 

 

 

3.1.2 Bishop Method 

 

In spite of it’s a simple method, the results obtained are similar that ones obtained with rigorous methods. 

Equation 2 is used in this method: 
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(3.2) 

 

 

3.1.3 Spencer Method 

 

It’s a particular case of a general method or GLE (General Limit Equilibrium). This method is considered 

rigorous, since satisfied forces and bending. 

 

 

3.2. Seismic analysis (Pseudo static method) 
 

In order to carry out the seismic analysis, ten synthetic accelerograms were generated using the seismic 

horizontal coefficient. In pseudo statics analysis is not common using the vertical one (Kramer, 1996). The 

seismic horizontal coefficient usually used for this type of analysis is the half of the maximum acceleration, a0 

(Hynes-Griffin and Franklin, 1984). However, because of the geological conditions of dam's site, a0 will 

considered. In agreement to Handbook of seismic design of CFE (1993), the design spectrum recommended for 

Tepuxtepec's dam is shown in figure 3.1. 
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Figure 3.1. Spectrum design of Tepuxtepec dam and synthetic acelerograms. 
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3.3. Hydrodynamics forces 
 

Bathymetric survey identified that sediments upstream have 13 m of high. This sediment generates an important 

hydrodynamic force on the dam. This force was assessed using the methods recommended in the Handbook of 

seismic design of CFE (1993) and Reséndiz et al. (1972). The recommended method estimates the 

hydrodynamic force on the dam’s top, based on a hydrodynamic spectrum and a modal analysis (eq. 3.3). 
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Figure 3.2. Compute of hydrodynamic forces assessment of the main section. 

 

 

3.4. Stability analysis results 
 

Analysis conditions that were checked in order to know the stability if the dam: 
 

Table 3.1. Factor of safety for the different analysis conditions 

No. Condition FS Slope Notes 

1 Steady flow 1.5 Downstream Spillway level 

2 Rapid drawdown 1.2 Upstream Water intake level 

3 Seismic 1.0 Upstream Spillway level 

 

Rocks parameters used in stability analysis are in term of total stress. Pore pressure is neglected. 
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Table 3.2. Rock shear strength condition 

Condition Shear strength condition 

1. Steady flow 

Undrained (simple compression) in terms of total stress 2. Rapid drawdown 

3. Seismic  

 

 

3.5. Factor of Safety 
 

The factors of safety (FS) obtained in the stability analysis are shown in table 3.3. The values of FS correspond 

to the minimal FS obtained for every fault surface. Two type of fault were analyzed: the main body of the dam 

and in the foundation's area. The rapid drawdown condition only was analyzed in the local fault; because of the 

sediments don’t permit developing to the translation fault. 

 

Table 3.3. FS values for the analysis conditions of the critical section. 

 Local Translation 

Method Rapid D. Seismic Rapid D. Rapid D. Seismic 

Janbu 6.711 5.104 26.664 4.325 2.656 

Spencer 7.145 5.216 27.126 5.026 3.117 

 

 

4. CONCLUSIONS 
 

The majority of the older dams were built using methods of seismic analysis and seismic design criteria, which, 

today, are considered as obsolete or outdated. Therefore, in many cases, it is not known if an old dam complies 

with the current seismic safety guidelines. The safety of dams and their potential risks to their downstream 

region, particularly in seismically active areas, are serious concerns for governments, private owners of dams 

and affected communities. That’s why; a stability analysis was carried out to the Tepuxtepec dam.  

 

The FS values obtained for the critical section exceeds the minimal values recommended by seismic guidelines. 

The highest values were obtained for rapid drawdown (27.126 Spencer method) and minus ones for the dynamic 

condition (5.104 Janbu method). In translation’s fault analysis, the minimal value of factor of safety so much in 

the static as dynamic condition appears in the stratum of pumice material. 

 

In general, the numerical analysis carried out to the Tepuxtepec dam exceeds for much the minimal FS 

established, so that, dam does not present stability problems. A valid explanation is in the last reinforcement, the 

structural analysis was considered high values of acceleration (0.46 and 0.76 g, Esteva, 1969), doing the 

reinforcement very conservative. The update of seismic hazard indicates that the maximum acceleration for the 

Tepuxtepec site is 0.15 g 
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