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ABSTRACT : 

The dynamics of simple linear and nonlinear oscillators are explored conceptually using the potential well
analogue. The model reveals useful conceptual interpretations of the response sensitivity of elastoplastic
systems to earthquake motions. 
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1. INTRODUCTION  
 
The potential well is one of the basic concepts of physics, underpinning, for example, quantum mechanics 
through the characterization of electron dynamics.  Potential well theory has been applied to many dynamics
problems, in particular yielding powerful insights into the fundamental characteristics of complex nonlinear 
dynamic systems.  Thompson and Stewart (2002) describe extensive studies of the nonlinear elastic,
asymmetric cubical potential well.  This is a prototypical model for a wide range of problems including, for
example, ship capsize under beam seas, which can exhibit chaotic and other kinds of nonlinear motions.  This
paper explores how these potential well concepts can aid understanding of the seismic response of simple linear
and nonlinear systems. 
 
 
2. POTENTIAL WELL THEORY 
 
The dynamics of a simple single degree of freedom system can be represented by the oscillation of a mass
particle within its potential energy well.  Consider a classical linear elastic oscillator, comprising a mass ( ), 
spring (with stiffness, ), viscous dashpot (with damping coefficient, ), and relative displacement ( ) an
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subject to an external force, .  This has the dynamic equilibrium equation )(tf
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This system has a linear elastic force-displacement curve, which, if integrated with respect to displacement,
leads to a parabolic potential energy well, , (Figure 1(b)).   )(xV
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A cubical elastic softening potential well is a prototype for a variety of real systems, such as the out-of-plane 
response of cracked masonry panels and self-centering structures.  In this case the dynamic equilibrium 
equation and its associated potential well become 
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(a) Force-deflection – linear spring     (c) Force-deflection – cubical spring 
 

    
 

(b) Potential well – linear spring     (d) Potential well – cubical spring 
 

Figure 1  Potential wells for linear and cubical elastic oscillators 
 
The shape and limits of the potential well are governed by the parameters related to the system’s stiffness and
strength respectively.  For linear or nonlinear elastic systems, these parameters are invariant and, hence, so are
the shape and limits of the potential well.  For elastoplastic or degrading systems, both the stiffness and the 
strength may vary with forcing, in which case the potential well shape and limits will not be invariant and the
instantaneous system response, which is dependent on the local shape of the potential well, will be conditioned
by the system’s response history. 
 
For an elastoplastic system (Figure 2), the only potential energy store is the linear elastic spring, which as noted
above has a parabolic potential well.  When the system starts to yield, this potential well effectively translates 
along the displacement axis until the velocity of the oscillator reverses.  During this translation, the mass
particle can be envisaged as remaining at the top of the elastic well.  When the particle reverses, it moves
down the elastic well at which time the oscillator is responding elastically.  If the forcing is such that it pushes
the particle to the opposite extreme of the elastic well and induces yielding in that direction, then the well will
translate in that direction.  The plastic work done in yielding is completely lost from the system.   
 
Figure 2 illustrates the response of a simple elastoplastic oscillator subject to sinusoidal forcing.  The oscillator
used here, and throughout this paper, has unit mass and is normalized to have an elastic stiffness of 1.0 and a 
yield force of 1.0 (Chopra, 2001).  Viscous damping is excluded unless noted.  This system has an elastic
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natural frequency of 1.0 rad/s.  In the normal way (Thompson and Stewart, 2002), by scaling time, relative to
the natural period of the oscillator, and by scaling forcing amplitude relative to the yield force, normalized 
response information can be obtained.  The simulations have been obtained using the Dormand-Prince 8th

order explicit integration scheme, with adaptive time steps, using the Dynamics Solver software
(Aguirregabiria, 2008). 
 
Figure 2(a) shows the response relative displacement, x, and the stored potential energy, both plotted against 
time, t.  Figure 2(b) shows similar plots for the response relative velocity, y, and the kinetic energy.  Figure 
2(e) shows the potential energy plotted against displacement. The system starts at rest at the origin and initially
responds elastically to A, and the potential energy follows the parabolic elastic well.  Once yield is reached at 
A, no more potential energy can be stored in the system, and the parabolic well translates in the positive x
direction until the oscillator reverses at B.  From this point, the system becomes elastic and follows the
translated parabolic well until yielding occurs in the negative x-direction at C, whereupon the well translates in 
that direction to D.  The general process continues, with the system settling down into a steady state where the
elastic well translates between the positive and negative displacement extremes at D and E. 
 

    
    (a) Displacement (x) and Potential Energy vs time          (d)  Phase space trajectory 
 

    
 

    (b) Velocity (y) and Kinetic Energy vs time            (e)  Potential Energy vs displacement (x) 
 

       
    (c) Force-deflection characteristic                   (f)  Kinetic Energy*sgn(y) vs displacement (x) 
 

Figure 2  Elastoplastic response to sinusoidal input 
 
Figure 2(f) shows for comparison the kinetic energy of the oscillator plotted against relative displacement. To 
aid clarity, the kinetic energy (which must always be a positive quantity due to its dependence on the squared
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velocity) is multiplied by the sign of the velocity.  Figure 2(d) shows the phase space (i.e. displacement vs
velocity) response trajectory.  The changes in colours are included to emphasize the quadrant of the phase
space.  If the total instantaneous energy of the system (i.e. the sum of its potential and kinetic energies) is 
introduced as a third orthogonal dimension to the phase space diagram (Figure 3(a)), the resulting bowl 
represents the locus of all possible points that the oscillator can occupy within that three dimensional space.   
 

      
(a) Elastoplastic             (b) Elastic                  (c) Superimposed 

 
Figure 3  Energy wells for an elastoplastic oscillator and an approximately equivalent 
elastic oscillator.  The elastoplastic well is for an oscillator having a ductility of 5, 
viscous damping factor, c, of 0.05, and unity elastic stiffness and yield force.  The 
elastic well is for an oscillator having a stiffness, ke, of 0.2 and a damping factor, ce, 
of 0.52.  The elastic well was identified by trial and error by matching the peak 
displacements of the two oscillators.  In both cases, the oscillators were subjected to 
sinusoidal forcing of normalized frequency 0.447 and normalized amplitude 0.5. 

 
The shape of this energy well is governed by the parameters of the system (i.e. mass, stiffness, damping and
yielding).  Where the system exists in this well at any instant is dependent on its loading history to that time.
When engineering the dynamics of the system to sustain a given loading, we are essentially seeking a shape and
extent of the energy well such that the system will always remain within it.  If the energy well is inadequate, 
then the system will ‘escape’ from the well, at which point the system has failed.  For forcing frequencies, ω, 
that are low relative to the elastic natural frequency of the system, ω0, say ω/ ω0 = 0.1, the response trajectory
will tend to reside at the bottom of the well, since the system will not develop much kinetic energy
(remembering that as the normalized forcing frequency tends to zero, the forcing becomes quasi-static).  For 
normalized forcing frequencies from about 0.6 to 1.5, the system will develop significant response and will
travel throughout the well. 
 
Figure 3(b) shows the energy well for a linear elastic oscillator whose parameters have been selected by trial
and error such that its extreme displacement response is equal to the elastoplastic system for the same forcing.
Figure 3(c) shows the two wells superimposed.  It is interesting to note the significant difference between the 
two wells, which highlights the care that needs to be taken when using equivalent elastic systems to estimate
elastoplastic responses. 
 
Figure 4(a) shows another perspective view of the energy well of an elastoplastic oscillator.  This is a snapshot 
taken from a time history analysis for a synthetic earthquake forcing.  The elastic well is the indentation
towards the centre of main well.  The yellow dot and its yellow tail show the position of the oscillator at that
time, with the tail indicating its recent path to that point.  The green vector represents the magnitude and
direction (relative to the displacement axis) of the instantaneous driving force.  In animation, the elastic well is
seen to sweep to and fro along the displacement axis, being dragged along by the oscillator’s mass as it reaches
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the limit of the elastic well.  This kinematic behaviour in fact sweeps out a volume in this three dimensional 
space, so the energy well for an elastoplastic oscillator can be envisaged as a thin shell in which the system 
exists.  This is not the case for an elastic system (linear or nonlinear) since its potential well is invariant, 
leading to an energy surface. 
 

(a)                                           (b) 
 
Figure 4  Snapshot of (a) kinematic energy well and (b) phase space diagram and 
vector field for an elastoplastic oscillator with ductility limit of 5 subject to a synthetic 
earthquake forcing.  In (b), the central blue zone denotes the current position of the 
elastic well.  The pink end zones denote the escape region beyond the ductility limit 
of 5. 

 
Figure 4(b) shows the instantaneous phase plane diagram of the system. The central blue zone indicates the
position of the elastic well, while the pink zones beyond the system’s ductility limits indicate where the mass 
has become a free particle (i.e. the oscillator has failed).  The position of the oscillator and its recent trajectory
are shown by the red dot and its tail, while the green vector shows the driving force, as in Figure 4(a).  The 
instantaneous vector field shows that the current force has opened up possible escape trajectories towards the 
negative displacement limit, while the trajectories to the right are ‘closed’ and would sweep the oscillator back 
into the safe well.  The vector field fluctuates depending on the position of the well and the magnitude and
sense of the driving force.  In this particular instant, the magnitude of the driving force is falling and in
subsequent time steps the vector field in the negative displacement quadrants closes and the oscillator is unable 
to escape.  This view of the system dynamics emphasizes that for failure of an elastoplastic system, the forcing
must reach a sufficient magnitude and persist for long enough for the vector field to remain open and allow the 
oscillator to escape.  This point is further illustrated in Figure 5, which shows some response histories for an
elastoplastic oscillator subject to a synthetic earthquake input. 
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Figure 5   Time history response of an elastoplastic oscillator subject to a synthetic 
earthquake motion.  Time histories are shown with arbitrary vertical offsets for 
clarity.  From the top, the pink curve is the earthquake driving force. Next, the blue 
curve is the relative response velocity.  The grey curve is the instantaneous absorbed 
power.  Finally, the red-black curve is the cumulative yield, with red indicating 
yielding episodes.  Note how yield occurs where the driving force and relative 
velocity are in phase, leading to a local maximum in the absorbed power. 

 
Here it seen that the plastic yielding phases are episodic, occurring at critical cycles in the loading, but these
cycles vary in amplitude and period.  Nevertheless, each of these cycles must impart a similar amount of
energy to the oscillator to drive it out of its energy well.  The instantaneous power absorbed by the oscillator is
the product of its relative velocity and the driving force (Mansfield, 2005); it will be greatest when both 
components are in phase.  This is clear from Figure 5, where the light grey curve denotes the absorbed power.
The first yielding occurs at around t=35, where there is a large amplitude but relatively short period forcing
pulse.  This contrasts with the yielding episode at around t=45, where there is a lower amplitude but longer 
duration forcing pulse.  These diagrams indicate that the elastic dynamic response of the elastoplastic oscillator
has relatively insignificant effect on the system’s response; this is, of course, why the classical, simplified force 
reduction factor design approach works so well, for it is emulating, to a reasonable degree, the impulsive,
episodic response of the elastoplastic system.   
 
Taking these notions a little further, it is obvious that the elastoplastic system offers lowest impedance to the 
driving force when the oscillator is at the extreme of its elastic well (and at zero velocity) and when the driving
force is about to start a cycle that will drive the oscillator back into its elastic well.  In this case, the driving 
force and oscillator’s relative velocity are perfectly in phase, and the system will absorb maximum power from
the input force; thus, we can use this notion to explore the ductility demand induced by a sinusoidal pulse.
Figure 6 shows ductility demand contours computed for the elastoplastic oscillator subjected to single cycle sine 
pulses having the normalized forcing frequency and normalized forcing amplitude corresponding to the
coordinates of each pixel. The starting condition in each case was displacement = -1.0, velocity = 0.0, oscillator
spring force = -1.0, and driving force direction towards positive displacement.  In Figure 6, red indicates a 
ductility demand of 1, green=2, blue=3, and so on up to black=8.  White represents elastic conditions (i.e. no 
yield).  The minima of each increasing ductility contour occur at reducing frequency ratios; this is consistent
with the reducing equivalent secant stiffness as ductility increases. However, it is also interesting to note the
compression of the contours as the forcing amplitude increases; here, smaller increments in forcing amplitude
lead to larger increments in response, in other words, the system becomes more sensitive to the forcing. 
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Figure 6  Ductility demand contours for sinusoidal pulse forcing.  Abscissa is forcing 
frequency normalized with respect to the elastic natural frequency of the oscillator.  
Ordinate is the forcing amplitude normalized with respect to the yield force of the 
oscillator.  The colour of each pixel represents the ductility demand for a sine pulse 
having the forcing frequency and amplitude corresponding to the pixel’s coordinates.  
The colours red through to black indicate ductility demands from 1.0 through to 8.0 
respectively. 

 
Figure 7 explores the response sensitivity in a different way.  Here, the so-called ‘safe basins’ in the phase plane are 
shown for the elastoplastic oscillator subjected to a single cycle sinusoidal pulse of normalized frequency 0.7 and for
five amplitudes of normalized forcing.  Each pixel denotes the outcome of application of the force pulse for the 
starting displacement and velocity conditions corresponding to the coordinates of the pixel.  Red indicates escape
(i.e. exceedance of the ductility limit) in the positive direction, and green indicates escape in the negative direction. 
White indicates that the oscillator remained safely within the ductility limits.  It is clear that increasing forcing 
gradually erodes the safe basin area as fractal fingers start to penetrate into the basin.  Such behaviour has been 
observed and studied in detail for nonlinear elastic systems (Thompson and Stewart, 2002), which tend to produce a 
much richer fractal structure as shown in the example of Figure 8.  The main reason for this richer structure is that
the nonlinear elastic system dissipates relatively little energy, and so more potential energy is available in the spring
to be released back into kinetic energy, which leads to greater sensitivity in the response.  The advantage of
elastoplastic systems is that they can only retain the potential energy of their linear elastic spring, which is
insufficient to cause significant sensitivity in most situations. 
 

         
      (a) F = 0.6          (b) F = 1.0         (c) F = 1.15         (d) F = 1.3         (e) F = 1.5 

 
Figure 7  Escape basin erosion for an elastoplastic oscillator with maximum ductility of 5 
subjected to a sine pulse of normalized frequency 0.7 for five normalized forcing 
amplitudes (F).  The colour of each pixel represents the outcome for the application of 
the pulse, with the oscillator having the initial displacement (x) and velocity (y) conditions 
corresponding to the pixel coordinates.  Red = escape x > 5, Green = escape x <-5, White 
= no escape (safe). 
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Figure 8  Cubical non-linear elastic oscillator response showing the escape basin in 
the phase space (displacement (x) vs velocity (y)). The colour of each pixel indicates 
the number of sinusoidal forcing cycles that lead to escape of the oscillator from its 
potential well, with the oscillator having the initial displacement and velocity 
conditions corresponding to the coordinates of the pixel.  

 
The basin erosion in Figure 7 is rapid as the forcing increases above F=1.15, consistent with the previous 
observation about compression of the ductility demand contours.  In the context of nonlinear elastic oscillators,
Thompson and Stewart named this the ‘Dover Cliff’ effect.  The penetration of the fractal fingers helps explain
the observed sensitivity of seismic response to input time history characteristics, particularly at the extremes of 
response.  Taking the previous arguments that the elastoplastic response is episodic and largely dependent on
individual forcing pulses, Figure 7 shows the influence of the starting condition of the oscillator when the pulse 
strikes.  Relatively small variations in initial displacement and velocity can lead to very different outcomes.
This also helps explain the counter-intuitive observations when, sometimes, scaling up the amplitude of a given 
input time history can lead to less response.  In such cases, the effect of increasing the amplitude of the earlier
part of the input motion is to induce earlier yielding.  This, in turn, shifts the phasing of the subsequent input
force and relative response velocity such that the oscillator offers greater impedance to later pulses, absorbs less 
power and therefore experiences less damage, i.e. the initial conditions have changed for the later pulses. 
 
Considering emerging displacement based design approaches, overall, the above observations highlight the need 
for robust means of handling the intrinsic uncertainties in the extreme non-linear dynamics of the structure if 
dependable performance estimates are to be achieved. 
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