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ABSTRACT : 

The purpose of this research is to calculate the center of rigidity in the non-linear range of eccentric structures. It 
is necessary to calculate the equivalent stiffness matrix in the non-linear range. One of the ways to calculate the 
matrix is the equivalent linearization method proposed by T. K. Caughey. Previous studies on this method, 
however, focused on the equivalent single-degree-of-freedom system (referred to as SDOF, hereafter), in which 
the matrices can not be calculated directly. On the other hand, few studies have been reported on 
multi-degree-of-freedom system (referred to as MDOF, hereafter). It is necessary for the calculation of the 
center of rigidity in the non-linear range of eccentric structures to develop the equivalent linearization method 
for MDOF. In this paper, the equivalent linearization methods for the MDOF were developed to extend the 
applicable scope of the method reported by T. K. Caughey, which is one of the equivalent linearization methods
for SDOF and based on the Least-squares method. Furthermore, a dynamic response analysis was conducted 
with one mass model with eccentric structures to evaluate the validity of the proposal methods. 

KEYWORDS: Eccentric Structure, Center of Rigidity, Equivalent Linearization,  
Multi Degree of Freedom, Dynamic Response，Least-squares Method 

1. INTRODUCTION  
 
Recently, the capacity spectrum method was developed to evaluate the performance of buildings. For example, 
the Building Standard Law of Japan contains the method to evaluate the performance of buildings based on the 
seismic evaluation method of the response and the limit strength. In this method, non-linear responses of the 
structure can be evaluated to substitute the non-linear structure with the equivalent structure based on the 
equivalent linearization method. The equivalent linearization method uses the equivalent stiffness calculated 
with the maximum response displacement and the equivalent damping calculated with the backbone curve and 
the maximum response displacement. One of the advantages of this method is that non-linear response of the 
structure can be obtained without conducting a time history response analysis. 
 
The torsional vibration of the eccentric structure is caused by the difference between the locations of the center 
of rigidity and the center of gravity. In the non-linear range, the center of rigidity of the eccentric structure can 
shifts according to the stiffness degradation of the structure. One way to evaluate non-linear responses of 
eccentric structures is to convert the non-linear eccentric structure into the equivalent eccentric structure using 
the equivalent linearization method. This equivalent eccentric structure is defined as the equivalent linear 
structure which has the center of rigidity in the same location as the non-linear range. In order to calculate this 
location, it is necessary to calculate equivalent stiffness matrix in the non-linear range using the equivalent 
linearization method. In order to calculate equivalent stiffness matrix in the non-linear range, it is necessary to 
propose equivalent linearization methods for the MDOF, because the equivalent linearization methods for the 
SDOF can not be calculated the matrix directly.  
 
Various studies have been reported on the equivalent linearization method. Previous studies on this method, 
however, focused on the equivalent SDOF. Furthermore, few studies have been reported on a method for the 
MDOF. Thus, the aim of this paper is to propose equivalent linearization methods for the MDOF to find the
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location of the center of rigidity of the eccentric structure in the non-linear range. In this paper, the equivalent 
linearization methods for the MDOF were developed by extending the applicable scope of the method reported 
by T. K. Caughey, which is one of the equivalent linearization methods for the SDOF and based on the 
Least-squares method. 
 
 
2. EQUIVALENT LINEARIZATION FOR SINGLE-DEGREE-OF-FREEDOM SYSTEMS 
 
T. K. Caughey developed one of the equivalent linearization for the SDOF using the least-square method. Here, 
this method is named as the dynamic stiffness method (referred to as DSM, hereafter). This method covers the 
steady-state response of the non-linear SDOF systems. In this method, the equivalent stiffness and the equivalent 
damping coefficient are calculated using the least-square method to minimize the residual sum of squares for the 
difference between linear restoring force and nonlinear restoring force. Thus, the DSM for the SDOF, which
have bi-linear hysteresis curve as shown in Figure 1, will be described. 
 
 
 
 
 
 
 
 
 
 
 
 
where, k is the initial stiffness of the system, γ is the stiffness degradation ratio, δY is the yield deformation, δ is 
the maximum deformation, and QY is the yield strength. The equation of motion for the SDOF is given as Eqn. 
(2.1). The non-linear hysteresis function of the system q(y) is given as Eqn. (2.2) 
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where, M is the mass of the system, C is the damping coefficient of the system, , y is the deformation of the 
system, is the velocity of the system, is the relative acceleration of the system, and is ground acceleration. y& y&& 0y&&
The equivalent linearized equation of motion for the SDOF can be given as Eqn. (2.3) using the error term. 
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Figure 1 nonlinear restoring force characteristic 

)
KyCe +& ) and nonlinear restoring 

force ( ). The purpose of the DSM for the SDOF is to calculate Ce and Ke. In the DSM for the SDOF, 

the Ce and Ke is calculated by minimizing the values of 

( )ykqyC +&
2ε . According to definition of the least-square method,

both Ce and Ke reached extreme value is necessary conditions to minimize the values of the function 2ε .Where 



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 

2ε  represents the square mean of the error term ( )tyyε ,,& . Thus, partial differential of 2ε by Ce and Ke

become 0 as shown in the following equations. 
 

 02 =∂∂ eKε , 02 =∂∂ eCε  (2.4) 
 
The ground acceleration is assumed as the harmonic ground motion as Eqn. (2.5). The steady-state response is
only considered. Eqn. (2.6) can be approximated from Eqn. (2.3) using the assumption that 2ε  can be ignored.
 

 ptay t cos0)(0 =&&  (2.5) 

 ( )φptδy t −= cos)(  (2.6) 
 
where, a0 is the amplitude, p is the angular frequency of the harmonic ground motion, and φ is the phase 
difference between the harmonic ground motion and the steady-state response. From Eqn. (2.3), Eqn. (2.4), and 
Eqn. (2.6), Ke is given as Eqn. (2.7). Similarly, Ce is given as Eqn. (2.8). 
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where, μ is the ductility factor (=δ/δy). From Eqn. (2.7), the equivalent stiffness Ke is shown as the function of μ. 
From Eqn. (2.8), the equivalent damping coefficient Ce is the function of μ and p. 
 
 
3. EQUIVALENT LINEARIZATION METHOD FOR MULTI-DEGREE-OF-FREEDOM 
 
In this chapter, outline of the Multi-degree-of-freedom Equivalent Linearization Method (referred to as MELM, 
hereafter) and outline of the Simplified Multi-degree-of-freedom Equivalent Linearization Method (referred to 
as SMELM, hereafter) will be described. The MELM was developed using the DSM for the MDOF, which is 
based on the DSM for the SDOF proposed by T. K. Caughey. The SMELM was developed to simplify the 
MELM. 
 
3.1. Modeling the Structures 
The MELM covers all of structures which are allowable to model lumped mass systems. Thus, structures are
modeled as follows. The structure has n degrees-of-freedom, and m inelastic springs. The displacement vector
{u} and mass matrix [M] can be written as Eqn. (3.1) and Eqn. (3.2), respectively. 
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Hysteresis model of all of the inelastic springs is bi-linear type as shown in Figure 1. Thus, stiffness matrix in 
the inelastic range is given as Eqn. (3.3) using two factors saj (s = 1…m , j = 1…n) and sbi (s = 1…m , j = 1…n).
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where, sk, sγ, sδY, sδ, and sQY for each inelastic spring named s were defined same as k, γ, δY, δ, and QY
respectively, as shown in Figure 1. The sq(y) is non-linear hysteresis function of each inelastic spring named s. 
The damping matrix is assumed proportional to the initial stiffness matrix. Thus, the damping matrix in both,
elastic and inelastic range, is written as Eqn. (3.4). 
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3.2. The DSM for Multi-Degree-of-Freedom Systems 
In this section, the DSM for the structure modeled in the previous section is described, based on the DSM for the 
SDOF. The equivalent stiffness matrix [Ke] and the equivalent damping [Ce] are defined as Eqn. (3.5).
Therefore, the nonlinear equation of motion is given as Eqn. (3.6). 
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where,  is the ground acceleration, {  is the ground acceleration vector, and {  is the non-linea0u&& }Φ }Q r 
restoring force vector expressed as Eqn. (3.7). The equivalent linearized equation of motion on the structure is 
given as Eqn. (3.8).  
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According to definition of the least-square method, each element of both [Ke] and [Ce] reached extreme value is 
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necessary conditions to minimize the values of the function each element { }2ε .Where { }2ε  represents the 

square mean of the error vector . Thus, partial differential of each element { }{ } { }( tuuε ,,& ) { }2ε by each element
of both [Ke] and [Ce] become 0 as shown in the following equations. 
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The ground acceleration is assumed as harmonic ground motion as Eqn. (3.11). The steady-state response is only 

considered. Eqn. (3.12) can be approximated from Eqn. (3.8) using the assumption that { }2ε  is can be ignored.
 

 ptau t cos0)(0 =&&  (3.11) 
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where, a0 is maximum amplitude, p is angular frequency of the harmonic ground motion, δi is the maximum 
deformation at each degree of freedom, and φi is the phase difference at each degree of freedom between the 
harmonic ground motion and the steady-state response. From Eqn. (3.9), Eqn. (3.10), and Eqn. (3.12), [Ke] and 
[Ce] are given as Eqn. (3.13) and Eqn. (3.14). 
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where, ske is equivalent stiffness of each spring expressed as Eqn. (3.15), sce is equivalent damping coefficient of 
each spring expressed as Eqn. (3.16), sγ is the stiffness degradation ratio of each spring, sμ is ductility factor of 
each spring (=sδ/sδY), and sδ is maximum deformation at each spring expressed as Eqn. (3.17). 
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Eqn. (3.13) represents the equivalent stiffness matrix [Ke] which can be calculated by replacing ske of Eqn. (3.3)
by sk sq(y). Similarly, Eqn. (3.14) represents The equivalent damping matrix [Ce] which can be calculated by
replacing sce of Eqn. (3.3) by sk sq(y). Therefore, in the DSM for the MDOF, the equivalent stiffness matrix and 
the equivalent damping matrix can be calculated using equivalent stiffness and equivalent damping coefficient
calculated for each spring. Thus, the center of rigidity in the non-linear range of eccentric structures can be 
calculated as Eqn. (3.18), using the equivalent stiffness for each direction and each story.  
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where, skex and skey is equivalent stiffness of x and y direction for each story, slx and sly are x-coordinate and 
y-coordinate of each spring for each story, and iex and iey are eccentricity of x and y direction for each story. 
 
3.3. Outline of the MELM 
In this section, the MELM, which is based on random vibration, is proposed. According to the report by Shibata,
when SDOF vibrate during earthquake, the equivalent stiffness can be calculated approximately as the slope of 
the maximum displacement point to the origin. And, the equivalent damping factor he can be calculated
statistically as Eqn. (3.19). 
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where, μ is ductility factor of inelastic spring, and h is the initial damping factor. The method is named the 
geometrical stiffness method (referred to as GSM, hereafter). The DSM for MDOF adopted the theory of the 
GSM, is the MELM. Thus, the equivalent stiffness of each spring ske is calculated as Eqn. (3.20) and the 
equivalent damping coefficient of each spring sce is calculated as Eqn. (3.20). However, in the MELM, sδ cannot 
be calculated as Eqn. (3.17), because φi cannot be estimated at the random vibration. Therefore, in the MELM, sδ
is calculated by observing the deformation of the inelastic spring directly. 
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3.4. Outline of the SMELM 
In this section, the SMELM was developed to simplify the MELM. In the SMELM, sδ is calculated by the δi as 
shown in Eqn. (3.21). It is assumed that nonlinear response of the structure shows a fundamental mode, then φi
and φj correspond to each other, because each degree of freedom vibrates in the same phase. Thus, Eqn. (3.21) is 
calculated by replacing the φi equal by the φj in Eqn. (3.17) 
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4. NUMERICAL ANALYSES ON THE ECCENTRIC STRUCTURE 
 
In order to validate of the MELM and SMELM proposed in the previous chapter, dynamic response analyses 
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were conducted with an eccentric structure. Dynamic response analyses were conducted with SDOF using the 
GSM, to compare the accuracy with the GSM for SDOF. In this paper, the accuracy of the methods was 
evaluated by focusing on the accuracy of the displacement of each degree of freedom. 
 
4.1. Analytical Model of the Eccentric Structures 
The structures in this study are one-story one-axis-eccentric structures. The analytical model of the eccentric 
structures is shown in Figure 2. The structure has four inelastic springs, three degrees of freedom in lateral, 
transvers and rotational direction, and rigid floor. The hysteresis of the inelastic springs is bi-linear type. 
 

 
 
In this study, time history analyses were conducted using two thousand four hundred analytical models. The 
parameters of the models are period of X direction Tx, damping factor h, yield strength QY, and eccentricity of Y
direction eY, as shown in Table 1. The yield strength QY is calculated by reduction percentage of the maximum 
strength of exploratory linear analyses. 
 

Table 1 Details of parameters 
period of X direction (sec) T x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

damping factor h 0.01 0.02 0.03 0.05

yield strength Q Y 40% 50% 60% 70% 80% 90%

eccentricity of Y direction (m) e Y 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50  
 
4.2. Process of the Analysis and Analysis Assumption 
Process of the analysis is as follows: 
(1) Conduct nonlinear time history analysis, to obtain the nonlinear maximum displacement at each degree of 

freedom δp in the response of the nonlinear analysis. 
(2) Calculate the equivalent stiffness matrix and the equivalent damping matrix by each of the MELM and the 

SMELM using the δp, which is obtained in the process (1). 
(3) Conduct linear time history analysis, to obtain the equivalent linear maximum displacement at each degree

of freedom δe in the response of the linear analysis using the equivalent stiffness matrix and the equivalent
damping matrix, which is calculated in the process (2). 

(4) Calculate the accuracy of the methods by the dimensionless value δe/δp, at the each degree of freedom. 
 
Four earthquake acceleration time history records (El Centro NS, Hachinohe EW, Kobe NS, Kokuji) were
inputted. Peak grand accelerations of all earthquake data were normalized as 100 gal and were inputted only in 
the X direction. Damping is assumed proportional to the initial stiffness matrix. The average acceleration 
method was used for the integral. 
 
4.3. Results 
The frequency distribution table of the accuracy about X degree of freedom is shown in Figure 3 (a). The 
frequency distribution table of the accuracy about θ degree of freedom is shown in Figure 3 (b). Vertical axis in 
Figure 3 shows the frequency. Horizontal axis in Figure 3 shows the accuracy (δe/δp); for each method, where 
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Figure 2 Analytical Model of Eccentric Structure 
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δe/δp=1.0 represents the most accurate point. 
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It can be seen from Figure 3 (a) that the accuracy of the MELM and the SMELM is almost the same with that of 
the SDOF. The accuracy of the SMELM is, however, more inaccurate than that of the MELM and the SDOF in 
Figure 3 (b). This is due to the fact that sδ is calculated as Eqn. (3.17) in the SMELM. Thus, in the SMELM, sδ
calculated as Eqn. (3.17) for the assumption that nonlinear response of the structure can be shown the 
fundamental mode. However the assumption is inaccurate in eccentric structures because the structures do not 
ignore the higher mode of structures. 
 
 
5. CONCLUSIONS 
 
The MELM and the SMELM which is Equivalent linearization method for the MDOF were proposed using the 
least-square method for the calculation of the center of rigidity in the non-linear range of eccentric structures.
Thus, the numerical analyses were conducted with the eccentric structures to evaluate the validity of the MELM 
and The SMELM. Results from the studies are as follows; 
・ The MELM was proposed to expand the applicable scope of the DSM developed by T. K. Caughey. 
・ In the MELM, the equivalent stiffness matrix can be calculated replacing the initial stiffness by equivalent 

stiffness at each spring in the linear stiffness matrix. Similarly, the equivalent damping matrix can be 
calculated replacing the initial stiffness by equivalent damping coefficient at each spring in the linear 
stiffness matrix. 

・ The center of rigidity in the non-linear range of eccentric structures can be calculated using the MELM. 
・ The accuracy of the MELM is almost the same with that of the GSM for the SDOF, which is the established

equivalent linearization method. 
・ The accuracy of the SMELM is more inaccurate than that of the GSM for the SDOF about θ degree of 

freedom, because higher mode of the structure is ignored in the SMELM.  
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(a) X degree of freedom 
Figure 3 Frequency table 

(b) θ degree of freedom 

 


	The structures in this study are one-story one-axis-eccentric structures. The analytical model of the eccentric structures is shown in Figure 2. The structure has four inelastic springs, three degrees of freedom in lateral, transvers and rotational direction, and rigid floor. The hysteresis of the inelastic springs is bi-linear type.

