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ABSTRACT:  
A new measure of demands for earthquake ground motion is presented. It is base on a continuous Timoshenko 
beam model. While considering the effect of nonuniform distribution of drift demands along the building height 
and taking into account the coupling effect of bending and shear distortion on the vibration of cantilever beam 
structures, the drift spectrum leads to more accurate estimations of drift demand for earthquake ground motions. 
This continuous model is compared with the combined flexural-shear beam model proposed by Miranda. 
Similar to the model proposed by Miranda, the dynamic properties of the cantilever Timoshenko beam model 
are highly influenced by a parameter called the height-width ratio. A formula is given to indicate the relation of 
height-width ratio with lateral stiffness ratio. The effects of height-width ratio, damping and higher modes on 
drift demands are examined. 
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1. INTRODUCTION 
 
The controlling of displacement during the design process of building structures has been given more concern 
since the 1971 San Fernando earthquake. It has also been shown that the use of lateral displacements as demand 
parameters could permit a more direct way to control the damage in the building structures during the design 
process. Among all of the displacement related parameter, the lateral story drift (defined as the ratio of story 
drift between two consecutive floors to story height) are considered as a significant cause that leads to the 
damage of building structures when subjected to earthquake ground motion. ( Moehle 1984 1992; Wallace 1994; 
Wallace and Moehle 1992).  

Examination of damage patterns during the earthquake showed that buildings in the near field might suffer 
large localized ductile displacement and story drifts, it could not be associated with the peak accelerations alone. 
The near-field ground motions often contain coherence waveforms that appear as distinct velocity or 
displacement pulses with high intensity. The coherent pulse-like nature of the near-field ground motion time 
history may cause the maximum response of the structure to occur before a resonant mode-like response can 
build up. These ground pulses may be associated with substantial inelastic response as well as higher-mode 
effects that generally cannot be represented adequately by response spectrum. In this case, Iwan（1997） 
introduced a simple measure of drift demands for earthquake ground motion called the drift spectrum. It is based 
on the wave analysis of a continuous shear beam model. The drift spectrum has become an increasingly 
important topic since then. Following Iwan, many researchers studied the drift spectrum in different ways. 
Chopra and Chintanapakdee (2001) show that drift spectra based on a shear beam model could also be 
computed using conventional modal analysis. Gulkan and Akkar (2002) introduced a simple replacement 
method for the drift spectrum. Kim and Collins’s study (2002) indicated that Iwan’s model could result in 
residual drifts for certain ground motion. Miranda (2006) used a combined flexural-shear beam model to obtain 
drift demands for earthquake ground motions, he introduced the generalized interstory drift spectrum which is 
applicable for different kinds of building structures which deform in the way of a combined flexural and shear 
type to estimate the maximum interstory drift demands. 

The elastic drift spectrum directly shows the story drift that a ground motion record would cause in a 
multistory shear building. It is a convenient tool that displays the maximum local drift demands at chosen 
elevation in buildings, which is very important during the building design process. Despite its revolutionary 
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concept, the drift spectrum introduced in Iwan’s model also has some disadvantages. It’s based on the wave 
analysis of a continuum shear beam, the effect of bending is not considered in the shear beam model. 
Furthermore, the wave analysis is not familiar with structural engineers and could result in residual drifts for 
certain ground motion as identified by Kim and Collins.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Simplified model for cantilever structures 
 
In this paper, an alternative method to estimate the drift demands for ground motions is developed and presented. 
Continuous cantilever beam model based on Timoshenko beam theory is utilized to estimate drift spectrum 
which is a measure of demand for earthquake ground motions on structures (see Fig.1). It has been commonly 
recognized that the interstory drift demands are not uniformly distributed along the building height. While 
considering this kind of nonuniform effect and taking into account the coupling effect of bending and shear 
distortion on the vibration of cantilever beam structures, the drift spectrum leads to more accurate estimations of 
drift demand for earthquake ground motions. This study can also avoid the residual drifts problem by using the 
conventional modal analysis techniques. The maximum drift spectra can supply as a rapid evaluation for the 
drift demands of earthquake ground motions, which is very important for the design of buildings to resist the 
seismic load.  
 
2. CONTINUOUS BEAM MODELS 
 
Many researchers have used the continuous beams to model the behavior of cantilever structures when subjected 
to static and dynamic loads since the last century. Westergaard (1933) introduced a continuous shear beam 
model with uniform-mass and stiffness to estimate lateral deformations of buildings subjected to earthquake 
ground motion. Rosenblueth et al. (1968) used shear beams and response spectrum analysis to estimate story 
shears and overturning moments in buildings structures. Montes and Rosenblueth (1968) used flexural beam 
model to estimate shear and overturning moment demands in chimneys. Based on a continuum model consisting 
of combination of a flexural beam and a shear beam, Miranda (1999, 2002) evaluated drift and acceleration 
response for different kinds of building structures.  

The Timoshenko beam theory was first introduced by Timoshenko in 1921. In this continuous beam theory, 
Timoshenko (1921; 1922) extended to include the effect of transverse shear deformation on the basis of 
Rayleigh beam theory. Following Timoshenko, many researchers studied the dynamics and vibrations of 
Timoshenko beams using traveling wave method or model vibration analysis (Miklowitz 1953; Anderson 1953). 
More recently, Geist and McLaughlin (1997) discussed the phenomena of double eigenvalues in Timoshenko 
beams. Kausel (2002) studied the effect of rotational motion on the normal modes of unrestrained shear beams. 

H 
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Aristizabal-Ochoa (2004) investigated the vibration of Timoshenko beam-column with generalized support 
conditions and subjected to a constant axial load along its span. Challamel (2006) compared Timoshenko and 
shear models in beam dynamics. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 Deflection shapes of flexural beam model and shear beam model 
 

Many studies have shown that the structures may deform in a flexural type or a shear type when subjected to 
lateral loads (see Fig.2), but more commonly, the structures deform in the form of a combined flexural-shear 
shape, and the overall lateral deformation is denoted by a superposition of shear deformation and flexural 
deformation (Khan and Sbarounis 1964; Heidebrecht and Stafford Smith 1973; Miranda 1999; Miranda and 
Carlos J 2002). In this paper, the coupling effects of bending and shear distortion on the vibration of cantilever 
beam structures are considered according to Timoshenko theory. It is shown that the joint effects of bending and 
shear deformations in Timoshenko beam structures are highly influenced by the height-width ratio. It is interesting to 
note that the deflection shapes of cantilever Timoshenko beam in the fundamental mode exhibit the form of a flexural 
type or a shear type when a certain value of beam height-width ratio is given. 
 
3. DYNAMIC PROPERTIES OF TIMOSHENKO BEAMS 
 
The governing equations for the free vibration of Timoshenko beam structures (see Fig.1 and Fig.3) are 

2 2
'

2 2( ) 0yEI k GA I
xx t

θ θθ ρ∂ ∂ ∂
+ − − =

∂∂ ∂
                            (3.1) 

2 2
'

2 2( ) 0y yk GA A
xx t
θ ρ∂ ∂ ∂

− − =
∂∂ ∂

                               (3.2) 

The Timoshenko beam in the model has the following material property: density ρ , Young modulus E  and 
shear modulus G . Its transverse cross section is denoted by total area A  and moment of inertia 2I Ar=  
( r = radius of gyration of the cross section). 'k is the shear correction coefficient depending on the shape of the 

cross section and material’s Poisson ratio υ ; y is the transverse deflection; y
x
∂
∂

 is the slope of the centerline 

of the beam; θ  is the rotation of the cross section. The transverse deflection y  of Timoshenko beam is 
denoted by a superposition of shear deformation and bending deformation. The relation is denoted by  

                          y
x

γ θ∂
= +

∂
                                      (3.3) 
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Figure 3 Differential analysis of Timoshenko beams 
 

The solutions to Eqn. 3.1 and 3.2 are of the form 
                        ( ), ( ) sin( )ny x t x tφ ω=                               (3.4) 
                        ( ), ( ) sin( )nx t x tθ ψ ω=                               (3.5) 

Substituting Eqn. 3.4 and Eqn. 3.5 into Eqn. 3.1 and Eqn. 3.2, and eliminating all functions of time, the 
following pair equations in terms of the shape functions ( )xφ  and ( )xψ  are obtained: 

                  
2

' 2
2 ( ) 0n

d dEI k GA I
dxdx

φ φ ψ ρ ω ψ
⎛ ⎞

+ − + =⎜ ⎟
⎝ ⎠

                       (3.6) 

                   
2

' 2
2( ) 0n

d dk GA A
dxdx

φ ψ ρ ω φ− + =                              (3.7) 

Eqn. 3.1 and 3.2 describe coupled rotation and lateral displacement of the uniform beam, where θ  can be 
eliminated to form a singular equation 

        
4 2 4 2 4

4 2 ' 2 2 ' 41 0y y E y I yEI A I
x t k G x t k G t

ρρ ρ∂ ∂ ∂ ∂⎛ ⎞+ − + + =⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
                (3.8) 

For a continuous cantilever beam with total height of H , introducing the following nondimensional variables: 
xx
H

=  

and 

H
φφ =  

Using the nondimensional variables just listed above, substituting Eqn. 3.4 into Eqn. 3.8, and eliminating the 
functions of time, then the following differential equation is obtained: 

               
2 4 2 24 2

2 2
4 ' 2 '

1 1 1 0n n
n

A H rd dH
E EIdx k G dx k G

ρ ω ρ ωφ φρω φ
⎛ ⎞⎛ ⎞+ + − − =⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
         (3.9) 

Introducing the following parameters: 

                                  '

E
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                           2 2A mH H
EI EI
ρβ = =                         (3.12) 

where m Aρ=  is the uniform mass per unit length of the continuum beam, then Eqn. 3.9 can be written as 
follows: 

                    (4) 2 2 '' 2 2 4 41 11 0n n nφ α ω φ β ω α ω φ
μ μ

⎛ ⎞ ⎛ ⎞
+ + − − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
              (3.13) 

Similar to the dimensionless parameter in the combined flexural-shear beam model proposed by Miranda, the 
lateral stiffness ratio η  of the Timoshenko beam is defined as 

                              
'k GAH
EI

βη
α

= =                            (3.14) 

Substituting 2I Ar= and '

E
k G

μ =  into Eqn. 3.14, we have  

                            
' 1H k G H

r E r
η

μ
= =                           (3.15) 

The solution of Eqn. 3.13 is of the form 
                              xCeλφ =                                   (3.16) 

The following polynomial is obtained after substituting the above equation into Eqn. 3.13 

                       4 2 2 2 2 2 4 41 11 0n n nλ α ω λ β ω α ω
μ μ

⎛ ⎞ ⎛ ⎞
+ + − − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
              (3.17) 

The solution of the above equation is of the form 

                           

22 2 2
2

1 2 2

22 2 2
2
2 2 2

1 1 41 1
2

1 1 41 1
2

n

n

n

n

α ω ηλ
μ μ α ω

α ω ηλ
μ μ α ω

⎡ ⎤− ⎛ ⎞ ⎛ ⎞⎢ ⎥= + + − +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤− ⎛ ⎞ ⎛ ⎞⎢ ⎥= + − − +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

                   (3.18) 

The sign of 2
1λ  is clearly negative. However, the sign of 2

2λ  is indefinite, it is controlled by the sign of  

                             
2 2

2

1 1nα ω
μ η

Δ = −                              (3.19) 

Case 1: when 0Δ < , the sign of 2
2λ  is positive. 

The four roots of Eqn. 3.17 are  
1 njλ δ= ± ,      2 nλ ε= ±  

where  

                 

2 2

2 2

2 2

2 2

2 1 1 41 1
2

2 1 1 41 1
2

n
n

n

n
n

n

αω ηδ
μ μ α ω

αω ηε
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⎛ ⎞ ⎛ ⎞
= + + − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
= − + + − +⎜ ⎟ ⎜ ⎟
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                   (3.20) 

The above relation of Eqn. 3.20 can also be expressed as follows: 

                       

2 2 2 2

2 2 2 2 4 4

1(1 )

1

n n n

n n n n

δ ε α ω
μ

δ ε β ω α ω
μ

− = +

= −
                             (3.21)                

The function of the lateral deflection / Hφ φ=  is expressed as follows 
             1 2 3 4sin( ) cos( ) sin ( ) cos ( )n n n nC x C x C h x C h xφ δ δ ε ε= + + +            (3.22) 
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Substituting Hφ φ=  and x Hx=  into Eqn. 3.7, the shape function of the rotation ψ  is obtained in the form 
of  

            [ ] [ ]1 2 3 4cos( ) sin( ) cosh( ) sinh( )n n n nC x C x C x C xψ χ δ δ ϑ ε ε= − + +             (3.23) 
where                         

2 2
n

n
n

α ω
χ δ

δ
= −  

and                           
2 2

n
n

n

α ω
ϑ ε

ε
= +  

1C , 2C , 3C , and 4C  are coefficients that depend on the following boundary conditions: 

At the base where 
_

0x = : 
(0) 0φ =  ; (0) 0ψ =  

At the roof where 
_

1x = : 

(1) 0d
dx
ψ

=  ; (1) (1) 0d
dx
φ ψ− =  

Four homogeneous equations in terms of coefficients 1C , 2C , 3C  and 4C  is obtained according to the 
boundary conditions. Setting the determinant of this set of equations equal to zero, and eliminating the 
parameters α and β , the characteristic equation can be expressed as follows: 

  2 2 2 2 2 2 2 2 2 2[( ) ( ) ]cos cosh ( )( )n n n n n n n n n nδ με μδ ε δ ε δ με ε μδ+ + + − + +  

                        
2 2

( 2 sin sinh ) 0n n
n n

n n

δ ε
δ ε

δ ε
−

− + =                         (3.24) 

Using the relation βη
α

= , eliminating α , β  and nω  from Eqn. 3.21, the following equation in terms of 

eigenvalues nδ  and nε  is obtained: 

                        2 2 2 2 2 2 21 1( ) ( ) 1 0
1n n n n n nδ ε η δ ε δ ε

μ μ
⎡ ⎤ ⎛ ⎞

− − − − + =⎜ ⎟⎢ ⎥+⎣ ⎦ ⎝ ⎠
           (3.25) 

The eigenvalues nδ  and nε  of the nth mode can be easily obtained from Eqn. 3.24 and 3.25. As it is shown 
above, double eigenvalues nδ  and nε  depend on the lateral stiffness ratio η  and the dimensionless ratio μ . 
The mode shape of lateral deflection normalized by 2 1C =  is expressed as follows. 

                

2

2
sin( ) cos( ) sinh( ) cosh( )

n
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n
n n n n n n n

n
n

n
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μεδ
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⎛ ⎞
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⎛ ⎞

+⎜ ⎟
⎝ ⎠

      (3.26) 

Where nζ  is nondimensional parameter for the nth mode of vibration and given by 

                      

( )
( )

2 2

2 2
cos cosh

sin sinh

n n
n n

n n
n

n
n n

n

ε μδ
δ ε
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ζ

εδ ε
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+
+

+
=
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                         (3.27) 

Taking the derivative of the shape function of lateral deflection nφ , we obtain  

       

2

2

2

cos( ) sin( ) cosh( ) sinh( )
1

n
n

nn
n n n n n n n n n

n
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d
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According to Eqn. 3.21, the circular frequency nω  of the nth mode can be computed by 

( )2 2
2

2( 1)
n n

n

δ εμω
μ α

−
=

+
                         (3.29) 

where nδ  and nε  are eigenvalues of the nth mode of vibration corresponding to the nth roots of the 
characteristic equations 3.24 and 3.25.  
 
Case 2: when 0Δ > , the sign of 2

2λ  is negative. 
For higher frequency modes with larger value of nω , the four roots of Eqn. 3.17 are  

1 njλ δ= ± ,      2 njλ σ= ±  
where                    

2 2

2 2

2 1 1 41 1
2

n
n

n

αω ηδ
μ μ α ω

⎛ ⎞ ⎛ ⎞
= + + − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

and  
2 2

2 2

2 1 1 41 1
2

n
n

n

αω ησ
μ μ α ω

⎛ ⎞ ⎛ ⎞
= + − − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

Using the boundary condition as case 1, the transverse deflection φ  in the mode shape are obtained as follows: 

         

2

' '
2

sin( ) cos( ) sin( ) cos( )

n
n

n
n n n n n n n

n
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n
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where 
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n

n
n n

n

σ μδ
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δ μσ
ζ
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δ

−
−

−
=
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⎝ ⎠

                       (3.31) 

The circular frequency nω  of the nth mode at this case is computed by 

                         
( )2 2

2
2( 1)

n n
n

δ σμω
μ α

+
=

+
                           (3.32) 

4. INFLUENCE OF HEIGHT-WIDTH RATIO ON DYNAMIC PROPERTIES OF CONTINUOUS 
TIMOSHENKO MODEL 

 
Considering a uniform beam with rectangular cross section, and that the beam is constructed of a homogeneous 
isotropic material with Poisson’s ratio 0υ . Common values of Poisson’s ratio 0υ  are 0.25 to 0.30 for steel, 
approximately 0.33 for most other metals, and 0.20 for concrete. The shear correction coefficient 'k can be 
calculated using the following equation（Cowper, 1966） 

                           ( )0'

0

10 1
12 11

k
υ
υ

+
=

+
                             (4.1) 

The relation of Young modulus E  and shear modulus G  can also be written in terms of 0υ  using the 
well-known formula (see for instance Popov 1968) 

                            ( )02 1E
G

υ= +                               (4.2) 

Substituting Eqn. 4.1 and 4.2 into Eqn. 3.15, the dimensionless ratio μ  can be expressed as follows: 

                            012 11
5
υ

μ
+

=                               (4.3) 
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Let 0
3

11
υ = , then 3μ = , and according to Eqn. 3.15 the lateral stiffness ratio  

                           3
3

H
r

η =                               (4.4) 

For a uniform beam with rectangular cross section, the radius of gyration 3
6

br = , where b =width of the cross 

section along the vibration direction (see Fig.1); Introducing the parameter called the height-width ratio 

                            HR
b

=                                 (4.5) 

Then the lateral stiffness ratio η  is computed by: 
                            2Rη =                                 (4.6) 

According to Eqn. 3.24-3.25 and Eqn. 4.4-4.6, when the dimensionless ratio μ  has a constant value of 3, the 
eigenvalues nδ  and nε  is determined by the height-width ratio R . That is to say, the mode shapes of lateral 
deflection, rotation and shear distortion in the continuous model depend only on a single parameter, the 
height-width ratio R .  

 
Figure 4 Effects of height- width ratio on deflection of the fundamental mode 

 
Figure 4 shows lateral deflection shape of continuous Timoshenko beam in the fundamental mode. Products 
corresponding to five values of height-width ratio are shown for to examine the influence of this ratio on the 
deflection shape. It can be seen that the dynamic properties of the continuous Timoshenko beam model are 
highly influenced by the height-width ratio, the deflection shows a shape of a flexural type for bigger values of 
height-width ratio and it changes to a shear type when this ratio becomes smaller.  
 
5. EARTHQUAKE RESPONSE HISTORY MODAL ANALYSIS OF THE CONTINUOUS MODEL 
 
The response of the uniform Timoshenko beam model shown in Fig.1 when subjected to a ground motion at the 

base 
..

( )gu t  is given by the following partial differential equation: 

           
24 2 4 2 4

4 4 2 2 ' 2 2 ' 4 2

( )
1 gu tEI y y I E y I yA A

H x t H k G x t k G t t
ρ ρρ ρ

∂∂ ∂ ∂ ∂⎛ ⎞+ − + + = −⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
          (5.1) 

The total lateral displacement response of the system can be calculated by superposition of all modes. 

( ) ( )
1

, ,
n

i
i

y x t y x t
=

= ∑                             (5.2) 

where ( ),iy x t =contribution of the ith mode with classic damping ratio, and it is given by  
                                  ( ) ( ) ( ),i i i iy x t x D tφ= Γ                           (5.3) 
Where iΓ  is modal participation factor of the ith mode of vibration; ( )i xφ =amplitude of the ith deflection 
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shape of vibration at nondimensional height x ; and ( )iD t =deformation response of a 
single-degree-of-freedom (SDOF) system corresponding to the ith mode, whose response is computed with the 
following equation: 

                      ( ) ( ) ( )
.. . ..

22 ( )gi i i i i iD t D t D t u tξ ω ω+ + =                    (5.4) 
For a continuum model with uniform mass, the modal participation factor of the ith mode is given by 

                             

_ _1

0

_ _1 2

0

i

i

i

x d x

x d x

φ

φ

⎛ ⎞
⎜ ⎟
⎝ ⎠Γ =
⎛ ⎞
⎜ ⎟
⎝ ⎠

∫

∫
                             (5.5) 

The lateral deflection ( )xφ  consists of shear deformation γ  and bending deformation ψ . Lateral drift ratio 
of the system is defined as the derivative of total deflection ( ),y x t  with respect to x  as follows: 

                              ( , )y x tIDR
x

∂
=

∂
                             (5.6) 

From Eqn. 5.2 and 5.3, we have 

                          ( ) ( )'

1

( , ) 1
i i i

i

y x t x D t
x H

φ
∞

=

∂
= Γ

∂ ∑                      (5.7) 

The ordinates of drift demand spectrum are defined as maximum lateral drift ratio over the height of the 
building structures and are given by 

                             max ,

( , )max
t x

y x tIDR
x∀

∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
                        (5.8) 

 
6. INFLUENCE OF HEIGHT-WIDTH RATIO ON INTERSTORY DRIFT DEMANDS 
 
Giving the material properties as Young’s modulus E =30Gpa, mass density ρ =2500 3kg/m , the circular 
frequency nω  of cantilever structures with height H can be computed using Eqn. 3.29 and 3.32 according to 

solution case 1 and 2 respectively, and the periods of the vibration modes can be computed by 2
n

n

T π
ω

= . The 

maximum interstory drifts are computed according to Eqn. 5.7 and 5.8, and only the first three modes are 
considered.  

 

 
Figure 5 Influence of height-width ratio on drift demand spectra 

 
Figure 5 presents interstory drift demand spectrum for undamped models subjected to the NS component of the 
ground motion recorded at Rinaldi Receiving Station during the 1994 Northridge earthquake when the 
height-width ratio is equal to 3, 5 and 8 respectively. It can be seen that the ordinates of the drift spectra 
augment with increasing height-width ratio. That is to say, the cantilever structures with bigger height-width 
ratio will suffer larger drifts and tend to be more fragile when subjected to the earthquake ground motions. 
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7. INFLUENCE OF DAMPING ON INTERSTORY DRIFT DEMANDS 
 

 
Figure 6 Influence of damping on interstory drift demands 

 
Figure 6 shows changes in interstory drift demands owing to difference in damping when subjected to the 
Rinaldi Receiving Station ground motion during the 1994 Northridge earthquake. The drift spectrum is obtained 
by giving height-width ratio a constant value of 5. The interstory drift demands are computed using the first 
three modes and the damping ratio is assumed to be the same in all modes. For three different levels of damping 
0, 2% and 5%, it can be seen that the interstory drift demands decrease with increasing damping and the 
influence varies in different vibration period range. 
 
8. INFLUENCE OF HIGHER MODES ON INTERSTORY DRIFT DEMANDS 
 

 
Figure 7 Influence of higher modes on interstory drift demands 

 
Figure 7 presents drift spectra of the NS component of the Rinaldi Receiving Station record using 1, 2, 3 and 4 
modes respectively. In all cases, the damping ratio is assumed to be zero. It can be seen that demands computed 
with 3 modes are practically the same as those computed with 4modes. It is concluded that only a small number 
of modes is enough to obtain maximum interstory drift demands. For this record, only 3 modes can provide 
adequate interstory drift estimates. Using only the fundamental mode is enough to obtain drift estimates when 
the fundamental periods are smaller than 2s. However, when the periods are longer than 2s, using only the first 
mode will result in underestimation of maximum interstory drift ratio. 
 
 
 
9. COMPARISON WITH PREVIOUS STUDY 
 
The vibration properties of this continuous Timoshenko beam model are compared with the combined 
flexural-shear beam model proposed by Miranda in Fig. 8. In the combined flexural-shear beam model proposed 
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by Miranda, the vibration modes in the continuous model depend on the parameter called lateral stiffness ratio 
α . As shown in Fig. 8, a value of 0α =  corresponds to a flexural beam while a value of 650α =  corresponds 
approximately to a shear beam. Intermediate values of α , represent structural behaviors that combine flexural 
and shear deformation. Similar to the model proposed by Miranda, the mode shapes in the cantilever 
Timoshenko beam model are controlled by the height-width ratio. Fig.8 also shows lateral deflection shape of 
continuous Timoshenko beam in the fundamental mode. Products corresponding to five values of height-width 
ratio are shown for to examine the influence of this ratio on the deflection shape in the fundamental mode. It can 
be seen that the deflection shows a shape of a flexural type for bigger values of height-width ratio and it changes 
to a shear type when this ratio becomes smaller. Similar to the generalized interstory drift spectrum proposed by 
Miranda, the drift spectrum in this study is associated with a parameter called the height-width ratio. In this 
study, it is showed that the lateral stiffness ratio is determined by the height-width ratio based on the continuum 
model composed of a single Timoshenko beam, and this study indicated that the drift spectrum is highly 
influenced by the height-width ratio. 

 
Figure 8 Comparison of Timoshenko beam model in this study with the combined flexural-shear beam model 

proposed by Miranda 
 

In former study of Iwan(1997) and Miranda (2006), the fundamental periods of the continuous model were 
computed using experimental relationship suggested for steel-moment-resisting frames in the 1997 UBC code, 
namely, 0.75

1 0.0853T H= . As pointed out by Miranda (2006) in his study, there is a significant uncertainty in the 
estimation of fundamental periods for buildings when using the experimental period relationship, and this 
uncertainty will cause uncertainty in the estimation of interstory drift demands. In this study, the periods of the 
continuous model are computed using the theoretical formula based on Timoshenko beam theory, so the model 
in this study can avoid the uncertainty in the estimation of interstory drift demands due to period uncertainty. 
However, the author thinks that this theoretical equation could only be accurate enough when used to evaluate 
the vibration periods of RC shear wall structures, but it should not be used to compute the periods for all kinds 
of building structures.  
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Figure 9 Comparison of interstory estimates using Timoshenko beam model in this study with the model 

proposed by Miranda subjected to Rinaldi record 
 
Figure 9 shows the Comparison of interstory drift estimates using Timoshenko beam model in this study with 
the model proposed by Miranda when subjected to Rinaldi record. As is shown by this figure, the interstory drift 
demands obtained in this study based on the Timoshenko beam model are smaller than the results obtained 
using Miranda’s model. This is accordant with the knowledge that the lateral resisting system such as the shear 
walls has the effects of reducing interstory drift demands, which has been confirmed by Miranda in his study. It 
is concluded that the drift spectrum based on the continuous Timoshenko beam model in this study is restricted 
for the evaluation of lateral drifts for shear wall structures. It might not be adequate to estimate lateral drift 
demands for other building structures when using the simplified cantilever beam model. 
 
10. SUMMARY AND CONCLUSIONS 
 
A new method to estimate the seismic demand of ground motions is developed and presented in this paper. 
Providing an estimate of maximum interstory drift demands for earthquake ground motions based on the 
continuous Timoshenko beam model, the interstory drift spectrum in this study can directly show us damage 
potential for the cantilever structures with different fundamental periods when subjected to earthquake ground 
motions. 

The drift demands of this cantilever Timoshenko beam model are highly influenced by the height-width ratio. 
It was shown that the cantilever beam structures with bigger height-width ratio will suffer larger drifts. It was 
also conclude that drift spectrum is much correlated with damping, and the influence of higher modes can not be 
neglected in the estimation of drift demands for cantilever structures when the fundamental periods are longer 
than 2s. 
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