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ABSTRACT : 

In this paper, the explicit finite element method to solve single-phase elastic solid media nodal points dynamic 

response with incidence of SV wave is introduced, Combined with local transmitting artificial boundary, the 

finite element method which can be used to simulate dynamic response analysis of single-phase elastic media of 

any topography when obliquely incident SV wave happened. With this method, the ground seismic response of 

an irregular topographic site is computed, and the related seismic ground motion is input to long span bridge, 

the seismic response of long span bridge considering asynchronous excitation is also computed. The effect of 

the change of incident angle and height/width ratio to earthquake response of ground surface and long-span 

bridge is analyzed, and some preliminary conclusion is concluded. It can be referred when the long-span 

structures which suffered asynchronous excitation is built through the irregular topography. 
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1. INTRODUCTION  
 

During the happened earthquake, the topography amplification effect is often observed, especially the irregular 

topography influences greatly to the wave propagation. In earthquake engineering, it displays that the ground 

movement greatly enlarges or shrinks, so it directly influences the distribution of earthquake damage. Generally, 

the mountain ridge suffers serious earthquake damage, but the flat topography suffers a light earthquake damage. 

Actual records and theoretical analysis express that the earthquake motion of mountain ridge is larger than the 

flat site. This fully shows that topography plays an important role on earthquake motion. For long span bridge 

stepping across irregular topography, the topography effect to the influence is more notable. Therefore, we must 

study the wave propagation and scatterance in local sites, to gain the exact seismic ground motion to serve for 

the bridge earthquake design. The main two factors influence the topography effect: (1)incidence angle, (2) the 

parameters of local site topography, like height/width ratio etc. This paper mainly discusses the two factors to 

the influence of seismic response of bridge with obliquely SV wave incidence when SV wave goes through the 

irregular topography. 

 

 

2. Explicit finite element method simulating dynamic response analysis of local site 

 

At present, the finite element methods solving the seismic response of local site mostly are implicit or 

implicit-explicit. But these methods have a disadvantage that they must solve one set of coupled linear equation 

during every time step space in time domain. When the number of DOF of system which we want to solve is 

small, maybe these methods are suitable. But if the number of DOF is large, these methods will lead to an 

immense work, so their application is largely limited. At present, these methods rarely apply for actual 

engineering, it is especially inconvenient for dealing with nonlinear questions. To conquer the shortcomings 

mentioned above, Liao zhenpeng
[1]
etc. proposed one kind of explicit finite element method whose 

characteristics are listed as below: uncoupled, only need single stiffness matrix instead of total stiffness matrix, 

don’t need solve simultaneous equations. In addition, the nodal motion to be solved only relates with its near 
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nodes. Therefore, this method can save computer memory space and raise the computation speed. Combined 

with local transmitting artificial boundary
[1]
, the finite element method which can be used to simulate dynamic 

response analysis of single-phase elastic media of any topography is proposed. 

 

 

2.1 Local Transmitting Artificial Boundary 

 

Transmitting artificial boundary is developed by the guiding idea that the propagation characteristics are directly 

simulated in artificial boundary. The transmitting artificial boundary divides the wave field of artificial 

boundary area into inner-transmitting wave motion field and scattering wave motion field. Transmitting 

artificial boundary mainly simulates the movement of artificial boundary caused by scattering wave motion field. 

The inner-transmitting wave motion field goes from the outside area of the artificial boundary to inside area of 

the artificial boundary. In actual project, inner-transmitting wave motion field is known which can be solved by 

the theory of wave propagation. But scattering wave motion field is not known, in most boundarys, it has no 

theoretical solution. Therefore, the total movement of artificial boundary nodes have no theoretical solution, it 

can only be solved by numerical methods. In order to simulate the movement of the artificial boundary nodes, 

transmitting artificial boundary establishes the approximate movement relation between artificial boundary and 

inner areas through the propagation law. The motion equation of nodes of the artificial boundary is Eq.2.1. 
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,P, P+1 respectively means at the time P and the time P+1,J-1, J-2 respectively means the node 

that lies in the inner normal line of J node of artificial boundary. x∆ is space step of discrete mesh that is 

perpendicular to the artificial boundary surface.  

 

 

2.2. Establishment of Dynamic Analysis Equation of Inner Area Nodes 

 

According to finite element method, the physical quantity of one node can be expressed by neighboring nodes’. 

We take out one set of local nodes which is illustrated in Fig.2.1, we supposed one node’s number is 1, whose 

neighboring nodes and the node consists of the local nodes. When the motion equation of number 1 is built, the 

lumped-mass matrix is adopted. Also, to simplify the computation, the change of inertia force in one element is 

ignored. That is to say, the inertia force in one element is supposed to be constant. For the set of nodes listed in 

Fig.2.1, the total number of nodes is supposed to be N, and the displacement vector of this set of nodes is 

expressed as Eq.2.2. 

               

                      [ ]Tu = [ ]Nuuu •••21                                   （2.2） 
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Figure 2.1 one set of local nodes 

 

To SV wave, the motion equation is Eq.2.3. 
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                                    （2.3） 
 

In this set of nodes, the relation between the node number n and the node number of one of the element whose 

number is e can expressed as Eq.2.4 and Eq.2.5. 

 

n=n (j)                                       （2.4） 
nu  = )( jnu = 

e

ju                                      （2.5） 
 

According to the document
[2]，the explicit solution to the equation of motion of local nodes is Eq.2.6, Eq.2.7 and 

Eq.2.8. 
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Eq.2.6, Eq.2.7 and Eq.2.8 are the equations to solve the dynamic response of the node 1. Those equations are 

suitable to any node i if we substitute i for 1. 

 

 

2.3. Establishment of Dynamic Analysis Equation of Nodes in Artificial Boundary Nodes 

 

Eq.2.6, Eq.2.7 and Eq.2.8 are the equations of motion of area inside the artificial boundary. To realize the 

recursion computation of inner nodes, we must establish the recursion formula of nodes that lie in artificial 

boundary. The formula can be referred as Eq.2.1. 

 

 

3. Input of Earthquake Motion 

     

The total wave field of inside the artificial boundary equals to the sum of scattering and inner-transmitting wave 

field. But the total wave field can be solved by computing the motion equation. So the main work to gain the 

scattering wave field is to confirm the inner-transmitting wave field. The artificial boundary area can be divided 

into 4 parts which is illustrated in Fig.3.1. Left artificial boundary area, right artificial area, bottom artificial 

boundary and inner computing area. It is supposed that the displacement of origin of coordinates is wo(t) which 

is caused by incidence of SV wave. Cs and Cp respectively are the velocity of S wave and P wave. According to 

document
[2]
, the inner-transmitting wave field of four parts mentioned above can be solved.  

 

 

3.1. Right Artificial Boundary Area  

 

Because there are not inner-transmitting wave field in right artificial boundary area, the value of 

inner-transmitting wave field is zero. 

 

 

3.2. Bottom Artificial Boundary Area  

The value of inner-transmitting wave field in bottom artificial boundary area equals to the value of wave field 

going through from outside of the computing area to the bottom artificial area. So the displacement value of 

inner-transmitting wave field of bottom artificial boundary is Eq.3.1 and Eq.3.2. 
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Where x, y are the coordinates of nodes which lie in bottom artificial boundary. 
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Figure 3.1 Model of Earthquake Motion Input 

 

 

3.3. Left Artificial Boundary Area 

 

The value of inner-transmitting wave field of left artificial boundary area equals to the sum of two parts of wave 

field: one part is directly going into the left artificial boundary area, the other part is the wave field which first 

reflects by the left free ground and then goes through the left artificial boundary area. The first part of wave 

field can be solved by Eq.2.6, Eq.2.7 and Eq.2.8. The wave field value of the other part can be solved as follows.   

The SV wave reflects after the free ground, it will produce SV wave and P wave. Their reflection angles 

respectively are Eq.3.3 and Eq.3.4. 

 

                                  sθ  = θ                                             (3.3) 
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                              (3.4) 

 

Their reflection coefficients respectively are Eq.3.5 and Eq.3.6. 
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To prevent producing nonhomogeneous plane wave, we suppose Eq.3.7. 

 

θ < )(sin 1 PS CC−
                                      (3.7) 

 

The displacement value of left artificial boundary caused by inner-transmitting wave field after reflecting by the 

left free ground is Eq.3.8 and Eq.3.9. 
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The equations of solving the value of displacement of inner-transmitting wave field are given above. These 

equations are also suitable to the solution of velocity if we substitute velocity function to displacement function. 

 

 

4. Influence of Incident Angle and Height/Width Ratio to Topography Amplification Effect 

 

To show the influence of incident angle and height/width ratio to topography amplification effect, some real site 

is selected to compute. We suppose the medium is homogeneous and isotropy, and the computing area size is 

496ｍ×160ｍincluding the irregular topography. The left, right and bottom side of the site is set up 
transmitting artificial boundary, and the upper side of the site is free. The time step space is 0.001s. The medium 

parameter of the site:λ =4.2×109Pa，µ =1.85×109Pa， ρ =2700㎏/m3. The discrete model of the site is 
illustrated as Fig.4.1. The seismic motions were recorded in 1989 when SAN FRANCISCO earthquake 

happened. Its history curve is illustrated in Fig.4.2. We use this seismic acceleration to be the input of the site, 

then the seismic responses of ground point A(112,160)，B(184,96)，C(312,72)，D(384,160) are computed. We 
define the vertical distance form point C to the free surface is H, and the distance between point A and point D 

is L. Then the height/width ratio is H/L. Because of SV wave incidence, the incident angle θ  must conform to 
the condition )/(sin 1

ps CC−<θ . Where CS and CP respectively refers to S wave velocity and P wave velocity. 

So θ < 06.23 , we take θ  as θ =
00 , 010 and 020 . We take H/L as 0.26, 0.32and0.38. Then maximum 

displacements of A, B, C and D are listed in Table 4.1. 
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Figure 4.1 Model of Bridge and Site  
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   Figure 4.2  Seismic Motion History Cure 
 

Table 4.1  Maximum Displacement Value of Free Ground  

 
 

The displacement history curves when the H/L is 0.38 and the incident angle is 10
0
和 20

0
 are 

illustrated in Fig.4.3 and Fig.4.4. 

 

0 1 2 3 4 5

-1 0

0

1 0

2 0

 1 0
0

 2 0
0

0 1 2 3 4 5

-8

-6

-4

-2

0

2

4

6

8

位移(cm)
 1 0

0

 2 0
0

 
                  T(sec)                                      T(sec) 

       Figure 4.3 X Direction of Point B               Figure 4.3 Y Direction of Point B 

 

According to Table.4.1, when height/width ratio remains the same, the seismic response of free ground of X 

direction has the trend to decrease, and Y direction has the trend to increase; also, with the incident θ  
increases, the change of height/width ratio to the influence of the ground response becomes more and more 

important. 

 

 

5. Seismic Response of Long Span Bridge Considering Topography Effect 
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In this part, the seismic motions considering topography effect solved above are input to the long span bridge. 

Therefore we can get the seismic response of long span bridge considering the topography effect. We suppose 

the bridge structure is elastic, and the bridge model is two dimensional. We choose a continuous frame bridge to 

analyze its seismic response. The box girder section is illustrated in Fig.5.1 ; and the pier section is illustrated in 

Fig.5.2 ; the computation model of the bridge and the site is illustrated in Fig.4.1. The computing area size is 

496ｍ×160ｍ. The left, right and bottom side of the site is set up transmitting artificial boundary, and the upper 
side of the site is free. The time step space is still 0.001s. The site parameters and the seismic motion are the 

same mentioned above. 
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                                         Figure 5.1 Box Girder Section（m）      Figure 5.2 Pier Section（m） 

    
The seismic motions of A, B, C, D nodes are regarded as the input motions to analyze the seismic response of 

the long span bridge. Then the seismic response of the middle point F of the middle span is computed. The 

maximum values of displacement response of F point under uniform and multiple-support excitations are listed 

in Table.5.1.From the Table.5.1, we can find that if we consider topography effect, the displacement response is 

much larger than that we don’t consider topography effect. Therefore we draw that topography effect plays an 

important role in seismic response analysis of long span bridge. It is necessary to consider topography effect 

when long span bridge steps across the irregular topography. 

 表5.1  Maximum Displacement Value of Middle Point F (cm) 
H/L 0.26 0.32 0.38 

θ  
00  

010  
020  

00  
010  

020  
00  

010  
020  

X -5.0 9.9 9.4 -5.0 9.9 9.4 -5.0 9.9 9.4 uniform 

excitations Y 0 -1.7 -3.4 0 -1.7 -3.4 0 -1.7 -3.5 

X -52.3 -54.9 -45.7 -56.0 -59.7 -38.7 26.2 28.0 -31.2 multiple-support 

excitations Y 0 38.2 52.2 0 44.6 40.8 0 -6.7 -10.9 

 

 
6. Conclusion 

 

   According to the result listed above, when SV wave goes through irregular topography sites, if we remain 

the height/width same, with the increase of incident angle θ , the seismic response of points in free ground 
decreases along X direction, but increases along Y direction. Also, with the increase of θ , the height/width 
plays more and more influence in seismic response of the free ground.  

    The seismic response of long span bridge considering topography effect is much larger than that don’t 

consider topography effect. Therefore, topography effect plays an important role in seismic response analysis of 

long span bridge with the incidence of SV wave. We must pay more attention to topography effect when the 

long span bridge is designed. 
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