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ABSTRACT 

The manner in which the horizontal slab in 3D buildings, or better the rigid diaphragm effect, is modeled may 
influence the response of the structure when subjected to seismic action. In this work different ways of modelling 
the rigid diaphragm effect are tested and compared, through the application to the irregular 3D SPEAR building, 
a full-scale specimen tested under pseudo-dynamic conditions at JRC Ispra, representing typical old three-storey 
buildings built in the Mediterranean region in the early 1970s. The dynamic properties of the different models 
(periods, modes of vibration and effective modal mass percentages) are analysed, and the corresponding 
interaction with seismic action is studied by means of nonlinear static and dynamic analyses; different response 
measures, such as capacity curves, interstorey drifts and displacements are evaluated for the two orthogonal
directions. The results of this study show that the most accurate and reliable way of modelling the floor’s 
behaviour is the Rigid Diaphragm with Lagrange Multipliers nodal constraints model. 
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1. INTRODUCTION 
 
Typically, in reinforced concrete buildings floors usually exhibit a very large in-plane stiffness when compared
with the lateral stiffness of vertical elements. Hence, such slabs may be modelled assuming a rigid diaphragm 
behaviour in plan, i.e. a rigid body motion of the floor without deformation in their own plane. There are many 
techniques that can be used to model such rigid diaphragm effect. In this study, several solutions are therefore 
tested, and their results are then compared, in terms of floors displacements, interstory drifts and capacity curves 
in both directions. 
 
The structure under analysis is the SPEAR building, designed and tested under the framework of the European
project SPEAR - Seismic Performance Assessment and Rehabilitation (Fardis and Negro, 2006). This structure is 
intended to represent typical existing three-storey buildings in the Mediterranean region, and as such was 
designed for gravity loads only, following the concrete design code implemented in Greece between 1954 and
1995, with the construction practice and materials used in Greece in the early 1970s, including smooth 
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reinforcement bars. Plan and elevation views are shown in Figure 1, whilst further details on the structure and its
pseudo-dynamic testing can be found in Fardis (2002) and Fardis and Negro (2006). 
 

a)  
 

b) 
Figure 1 Building configuration: a) in plan; b) at the south west facade (units meters) 

 
 
2. NUMERICAL MODELLING 
 
2.1. Geometry 
 
This structure has been modeled by other researchers in the past (e.g. Jeong and Elnashai, 2005; Franchin et al., 
2005; Fajfar et al., 2006), who have however employed different software solutions and did not discuss the issue
of diaphragm modelling. The structural analysis software used in this study was SeismoStruct (SeismSoft, 2008), 
freely downloadable from the internet and capable of predicting the large displacement behaviour of space 
frames under static or dynamic loading, taking into account the inelastic behaviour of the materials as well as the
geometric nonlinearities of the elements. 
 
The 3D building was represented with a space frame model assuming the centrelines dimensions (Figure 2). 
Rigid offsets on the column-beam end connections were not considered; it was pragmatically assumed that the 
resulting additional deformation/flexibility somehow compensates for the lack of bar-slippage modeling in the 
beam-column joints. Due to its larger dimensions, however, column C6 was modelled as a wall element. The 
storey heights amount to 2.75m for the first and 3.00m for the upper storeys. To model the inelastic behaviour of 
the structural elements, a fibre element model is adopted, with each fibre being characterised by the material
relationships described below.  
 

a)      b)  

Figure 2 SPEAR building: (a) Experiment specimen, (b) computer model 
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2.2. Materials  
 
A uniaxial model that follows the constitutive relationship proposed by Mander et al. (1988) and the cyclic rules 
proposed by Martinez-Rueda and Elnashai (1997) was adopted for the concrete. The confinement effects 
provided by the lateral transverse reinforcement are incorporated through the rules proposed by Mander et al.
(1988) whereby constant confining pressure is assumed throughout the entire stress-strain range. A compressive 
strength of 25 MPa was considered.  
 
The constitutive model used for the steel was that proposed by Menegotto and Pinto (1973) coupled with the 
isotropic hardening rules proposed by Filippou et al. (1983). An average yield strength of 360 MPa and ultimate 
strength of 450 MPa was assumed.  
 
2.3. Mass and loading  
 
A mass of 67.3 tonnes for floors 1 and 2 and 62.8 tonnes for the roof was considered. The coordinates of the CM 
(centre of mass) and of the CR (centre of stiffness) are the same for the floors 1 and 2 and vary slightly for the 
roof. The CR is eccentric with respect to the CM by (1.3; 1.0) m, which effective renders the structure are 
irregular, according to the criteria set by Eurocode 8 (CEN, 2004). Loads were automatically computed by the 
software, using the defined masses.  
 
 
3. DIAPHRAGM MODELLING 
 
The slab of the SPEAR specimen was very rigid, in order to warrant a correct distribution of inertia forces
throughout the structure and also allow an appropriate control of the pseudo-dynamic test. Herein, different 
manners in which such rigid diaphragm can be modeled are thus scrutinized.  
 
3.1. Horizontal Truss System 
 
Lanese et al. (2008) carried out a sensitivity study to determine the best possible configuration of horizontal
trusses (see Figure 3), which may not be a straightforward decision when plan-irregular buildings with beams
framing on beams are modeled. By comparing the experimental response with the numerical results, it was
concluded that the truss configuration shown in Figure 3(d) was the most effective. The axial stiffness of the
trusses was computed so as to match the membrane stiffness of a given floor “panel” (the slab was sub-divided 
into four of these). 

   
3.2. Nodal Constraints 
 
Both rigid diaphragm and rigid link options were considered; they differ only in the fact that in the latter several 
rigid constraints are explicitly defined by the user per each floor level whilst in the former such multiple
constraint approach is internally set by the computer code. Evidently, displacements along the horizontal x and y
axes as well as rotation around the vertical z axis are restrained. 
 
Nodal constraints are typically implemented in structural analysis programs through the use of (i) geometrical
transformations, (ii) penalty functions, or (iii) Lagrange multipliers. In nonlinear analysis, however, the first of 
these three tends to lead to difficulties in numerical convergence, for which reason only the latter two are 
commonly employed, and have been considered in this study. Whilst readers are advised to refer to existing
literature (e.g. Cook et al., 1989; Felippa, 2004) for further information on this topic, herein it is simply noted 
that whilst penalty functions have the advantage of introducing no new variables (and hence the stiffness matrix
does not increase and remains positive definite), the penalty matrix may significantly increase the bandwidth of 
the structural equations (Cook et al., 1989). In addition, penalty functions have the disadvantage that penalty 
numbers must be chosen in an allowable range (large enough to be effective but not so large as to provoke 
numerical difficulties), and this is not necessarily straightforward (Cook et al., 1989). 
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(a) (b) 

  
(c) (d)  

Figure 3 Horizontal truss system configurations tested by Lanese et al. (2008)  
 

 
4. MODAL ANALYSIS 
 
Modal analyses were performed in order to make a preliminary assessment of the different rigid diaphragm
modelling strategies used in this work. The periods, the modes of vibration and the modal participation mass 
percentage were compared for all the slab modelling options studied. In addition, the results obtained with the 
fibre model were also compared with an elastic model developed in SAP2000 (Computers and Stuctures, 2004). 
 
In the results that follow, the RDLM terminology stands for Rigid Diaphragm Lagrange Multipliers, RDPF for 
Rigid Diaphragm Penalty Functions, RLLM for Rigid Links Lagrange Multipliers and RLPF for Rigid Links 
Penalty Functions. Group 1 includes the following modeling options: Truss elements; RDLM; RDPF10^1, 2, 
-1,-3,-6,-10; RLLM; RLPF10^1, -1,-3,-6,-10. Group 2, instead, features: Truss elements; RDLM; RDPF10^1, 2, 
3; RDPF10^-1,-3,-6,-10; RLLM; RLPF10^1,3,-1,-3,-6,-10. 
 
The results obtained are graphically summarized in Figures 4 to 6, from which one can observe that: 

• the penalty functions 10^3, 10^4 and 10^6 options lead to results much different from the other models. 
Therefore, these models were not employed in the subsequent nonlinear analyses; 

• the results obtained from the remaining models (i.e. Group 1 for first modes and Group 2 for higher
modes) were all very similar; 

• the periods obtained with SAP2000 are slightly higher than those given by the fibre model. This is 
because in the latter the reinforcement bars are included, rendering the structure slightly stiffer. 

 
It is noted that small penalty coefficients (even lower than one, i.e. reductive) lead to good results, which could 
seem paradoxal. Penalty factors are computed as the product of the penalty coefficients indicated above and the 
highest value found in the stiffness matrix. Since an equivalent column with very rigid beam elements was used 
to model the large column/wall element, there were indeed already very large elements in the stiffness matrix,
which when multiplied with modest or small penalty coefficients warrant nonetheless penalty coefficients that
are large enough to simulate the rigid diaphragm effect in this given structure.   
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Figure 4 Periods for the 1st and higher modes 

1st modes

0
10
20
30
40
50
60
70
80
90

100

Group 1 RDPF,
RLPF
10̂ 3

RDPF,
RLPF
10̂ 4

RDPF,
RLPF
10̂ 6

Sap2000 

UX (%)

     

Higher modes

0

1

2

3

4

5

6

7

8

Group 2 RDPF, RLPF
10̂ 4

RDPF, RLPF
10̂ 6

Sap2000 

UX (%)

Translation mode X
Translation mode Y
Torsional mode

 
Figure 5 Modal participation mass percentage along X 

1st modes

0
10
20
30
40
50
60
70
80
90

100

Group 1 RDPF,
RLPF
10̂ 3

RDPF,
RLPF
10̂ 4

RDPF,
RLPF
10̂ 6

Sap2000 

UY (%)

     

Higher modes

0

1

2

3

4

5

6

7

8

Group 2 RDPF, RLPF
10̂ 4

RDPF, RLPF
10̂ 6

Sap2000 

UY (%)

Translation mode X
Translation mode Y
Torsional mode

 
Figure 6 Modal participation mass percentage along Y 

 
 
5. NONLINEAR STATIC ANALYSIS 
 
The main objective of this section is to check the performance of the different slab modelling strategies when 
nonlinear static analysis is considered. For this purpose, conventional pushover analyses were performed using
the Group 1 models (those that were shown to be “reliable” in the modal analysis described above). 
 
A pushover force distribution proportional to the fundamental mode shapes, in x and y directions, was employed. 
At each storey, and for each direction, the forces are distributed throughout the structure in proportion to the 
mass allocated to each beam-column joint (where the loads are applied). The loading was applied both
simultaneously in x and y directions, as well as in separate individual fashion.  
 
The pushover analysis (e.g. Figure 7) results laid evident the following: 

• the use of penalty coefficients 10^-10 leads to capacity curves that were clearly diverse from the others,
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and indication that the slab was exaggeratedly flexible;  
• the use of multiple rigid links lead to capacity curve that typically ended prematurely, especially when 

penalty factors were employed, indicating numerical difficulties even at early stages of the analysis; 
• the use of rigid diaphragm with penalty coefficients larger than 10^-10 does not allow accurate 

modelling of the post-peak softening response of the structure; 
• instead, the use of rigid diaphragm with Lagrange Multipliers allowed for capacity curves with complete

softening branches to be obtained, be it when x and y loads were applied independently, be it when they 
were applied in simultaneous fashion. 
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Figure 7 Example of capacity curves obtained with: (a) rigid diaphragm with Lagrange multipliers and (b) all 
other modelling approaches  

 
 
6. NONLINEAR DYNAMIC ANALYSIS 
 
From the scrutiny described above, slab modeling through the employment of rigid diaphragm with Lagrange 
Multipliers appeared to be the most numerically stable modelling strategy among all those considered. To 
complete this brief study, a final verification under nonlinear dynamic analysis conditions was undertaken.  
 
The SPEAR building was pseudo-dynamically tested with a bi-directional loading based on a record obtained at
Hercegnovi station during the 1979 Montenegro earthquake and fitted to the EC8 spectrum (type I, Soil C). This 
bi-directional accelerogram was applied to the structure in three runs of increasing amplitude (0.02g, 0.15g and 
0.2g). The very same input load was used in the nonlinear dynamic analyses carried out.  
 
It is recalled that the objective is not one of duplicating the experimental results recorded at the ELSA Lab (JRC
Ispra), but rather assessing the numerical stability of the adopted slab modeling strategy. Indeed, without the
explicit modeling of rebar slippage, identified during the test as one of the main factors influencing the response
of the test specimen, it would be unrealistic to think that the model assembled within the scope of this work
could have any chance of fully and accurately reproducing the pseudo-dynamic experiment.  
 
The dynamic simulations were carried out without any particular numerical difficulties, including those at the
third and highest intensity level, which had forced the structure to enter its post-peak softening range. The rigid 
floor behaviour was fully reproduced, and, as shown in Figure 8, the top displacement response history did 
somehow resemble that observed during the experiment (it is once again recalled that the numerical model does
feature all the characteristics of the test specimen).  



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 

a) 
-150.00

-100.00

-50.00

0.00

50.00

100.00

150.00

0 5 10 15

t (sec.)

d (mm)

Analytical model

Experiment

    b)  
Figure 8 a) Top displacement in node C7, x-direction; b) Top displacement in node N1, y-direction 

 
 
7. CONCLUSIONS 
 
In this study, the manner in which the horizontal slab in 3D buildings subjected to seismic action should be 
modeled was scrutinized, through the (simplified) modeling of the SPEAR building, a full-scale specimen tested 
under pseudo-dynamic conditions at JRC Ispra, representing typical old three-storey buildings built in the 
Mediterranean region in the early 1970s.  
 
The dynamic properties of the different models (periods, modes of vibration and effective modal mass 
percentages) were analysed, and the corresponding interaction with seismic action was studied by means of 
nonlinear static and dynamic analyses; different response measures, such as capacity curves, interstorey drifts 
and displacements were evaluated for the two orthogonal directions. 
 
The results of this study seemed to indicate that the most accurate and reliable way of modelling the presence of 
very stiff floors in this type of irregular structures, which featured misaligned beams supported on beams, is 
through a rigid diaphragm nodal constraints approach that makes used of Lagrange Multipliers. 
 
On the contrary, the employment of a horizontal bracing system, as elaborate as it might be, did not seem to lead
to an ideal numerical stability. Similar difficulties were observed with the introduction use of multiple rigid
constraints per floor, and with the employment of penalty functions to numerically introduce such nodal 
constraints.  
 
Finally, the study also evidenced how the choice of a correct value of penalty coefficient is far from being
straightforward. Indeed, and for the case of the structured studied here, uncharacteristically low values of penalty 
coefficients (which are then multiplied by the highest value in the stiffness matrix to define the penalty) had to be
employed, due to the fact that very stiff beam elements had been introduced to model the large column/wall
section with an equivalent column approach. 
 
The above does constitute another good reason for favouring the employment of Lagrange Multipliers to
introduce nodal constraints in nonlinear models of structures subjected to seismic action. Having said this, it is
also true that Lagrange Multipliers may not work adequately on some structural models (e.g. when one wishes to
constrain a degree-of-freedom with no stiffness), in which case an informed and well-judged use of penalty 
functions will be inevitably required.  
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