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ABSTRACT : 

We present a new practical optimum design method of viscous dampers in building frames. In the design field 
of structural engineering, structural designers always try to build mathematical models to simulate the exact 
behavior of real world system which are often very complex for the verification analysis and are not suited for 
the optimum design owing to the fact that they come with a good deal of computational cost. Therefore, we 
present a method using calibrated response model, which is simpler than the verification model. The calibration 
model is a statistical prediction of the verification model and with its usage the optimum design method of 
dampers can be made efficient and numerically stable. The efficiency of the presented method has been 
demonstrated by a numerical example. 

KEYWORDS : Optimum design, Viscous damper, Calibration, Bayesian inference  

1. INTRODUCTION 
 
Structural designers, in structural design, always try to develop mathematical models which can accurately 
simulate the behavior of the real world system. However, these models for the verification analysis are often 
complex and are not suited for the optimum design owing to the face that they come with a good deal of 
computational cost. Furthermore, it is difficult to understand the characteristics of the optimum solution. For 
this reason some studies of an optimum design method of viscous dampers [for example, Tsuji et al., 2000] in 
building frames have dealt with simpler model than the model widely used for the verification analysis. Here, 
we present a new practical optimum design method of viscous dampers in building frames using statistical 
prediction model within Bayesian framework. The presented method is based on the calibrated output of the 
simple model and is very efficient in view of computational cost and numerically stability. 
 
1.1. Multi-level Models 
Kennedy and O’Hagan (2001) modeled the outputs of multi-level computer codes using a spatial 
autocorrelation structure within Bayesian framework. In this paper, we use this multi-level model: verification 
model and simple model. We define a model using nonlinear time history response analysis as verification 
model and a model using extended CQC method [Igusa et al., 1984] as simple model. The calibration model is 
defined as the scaled simple model based on computer experiments. The response by verification model is 
predicted as the scaled simple mode. The method is very efficient and numerically stable. Using this method, 
we formulate the optimum design problem, which finds a set of viscous dampers, the cross sections of columns 
and beams that minimize the cost function subject to some constraints. 
 
 
2. CALIBRATION MODEL 
 
From a Bayesian perspective, uncertainty about the output of complex model can be expressed by a stochastic 
process. The prediction method is assumed to be a function of a set of inputs denoted by 

1( , , ) X
X

n
nx x= ⊂x " R , with output of complex model represented by y ∈ R . Let us consider a model: 
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 ( ) ( )y η ε= +x x , (2.1) 
 
where ε  is a random noise and follows an independent normal distribution: 2(0, /(1 ))ε ασ α+N∼ . The 
parameters 2σ  and α  is unknown scale parameter and variance ratio. Such models typically include an 
unknown smooth response surface, which is knows as “nugget effect”. 
 
2.1. Gaussian Process 
We assume that ( )η x  is represented by Gaussian process [for example, Rasmussen et al., 2006] with mean 

( )
0m x  and covariance function 0( , )V ′x x . Gaussian process using a hierarchical formulation is expressed as 

 
 ( ) ( ) ( )( )2

0 0| , , , ,m Vη σ ψ ′x x x xβ GP∼ , (2.2) 
 
where ( ),⋅ ⋅GP  denotes Gaussian process distribution, and  
 
 ( ) ( )

0
Tm =x h x β , (2.3) 

 ( ) ( ) ( )2
0 , , ; / 1V Rσ α′ ′= +x x x x ψ , (2.4) 

 
where ( ) : Xn q→h x R R  is a function of the inputs x , which is the simple model. The parameter q∈β R  is 
an unknown vector of coefficients, and ( , ;R ′x x ψ)  is a given correlation function. In this paper, we use 
Gaussian correlation function as follows 
 

 ( ) ( ) ( )( )2
1

, ; exp /
q

k k k
k

R h h ψ
=

⎡ ⎤
⎢ ⎥′ ′= − −⎢ ⎥⎣ ⎦
∑x x x xψ , (2.5) 

 
where the hyper parameter 1{ , , }qψ ψ=ψ "  are called as correlation length parameters. We have a training 
dataset { , ( ); 1, , }Xi n i

iy y i n= ∈ = =x xD "R . According to (2.2), the distribution of 1( ( ), , ( ))nη η= x xη "  is 
multivariate normal as follows 
 
 ( )( )2 2

0| , , , / 1σ σ α+H Rη β ψ βN∼ , (2.6) 
 
where 
 

 
( )

( )

1 T

Tn

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

h x

H

h x

# , 
( ) ( )

( ) ( )

1 1 1

0

1

, ; , ;

, ; , ;

n

n n n

R R

R R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

x x x x

R

x x x x

ψ ψ

ψ ψ

"

# " #

"

. (2.7),(2.8) 

 
Using standard techniques for conditioning in multivariate normal distributions, we get Gaussian process 
prediction with mean ( )*

0m x  and covariance function *
0 ( , )V ′x x  as 

 
 ( ) ( ) ( )( )2 * *

0 0| , , , , , ,m Vη α σ ′x y x x xβ ψ GP∼ , (2.9) 
 
where 
 
 ( ) ( ) ( ) ( )* 1

0
T Tm −= + −x h x r x R y Hβ β , (2.10) 

 ( ) ( ) ( ) ( ) ( ){ }* 1
0 , , ; / 1 TV Rσ α2 −′ ′ ′= + −x x x x r x R r xψ , (2.11) 
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 ( ) ( )0 / 1nα α= + +R R I , (2.12) 

 ( ) ( ) ( ) ( ) ( )( )1, ; / 1 , ; / 1
T

nR Rα α= + +r x x x x xψ ψ" . (2.13) 

 
where nI  denotes the identity matrix of size n . The model is also known as “kriging”. Kriging is mostly 
used in two or three dimensional input spaces for spatial prediction, although Gaussian process prediction 
could be used in a general regression context. 
 
2.2. Gaussian Process within Bayesian Framework 
Using a weak prior for 2 2( , )p σ σ−∝β , integrating out β  and 2σ  of (2.9) by Bayes’ theorem, the Student’s t 
process predictor with n q−  degrees of freedom, mean ( )m x  and covariance function ( , )V ′x x  can be 
shown as 
 
 ( ) ( ) ( )( )| , , , , ,n q m Vη α ψ ′−x y x x xTP∼  (2.14) 
 
where ( ), ,⋅ ⋅ ⋅TP  denotes Student’s t process distribution, and 
 
 ( ) ( ) ( ) ( ),1ˆ ˆT Tm −= + −x h x r x R y Hβ β  (2.15) 

 
( ) ( ) ( ) ( ) ( )

( ) ( )( )( ) ( ) ( )( ) ,

1

11 1 1

ˆ, , ; / 1 T

T TT T

V Cσ ψ α2 −

−− − −

⎡′ ′ ′= + −⎢⎣
⎤′ ′+ − − ⎥⎦

x x x x r x R r x

h x r x R H H R H h x H R r x
 (2.16) 

 ( ) ,
11 1ˆ T T−− −= H R H H R yβ  (2.17) 

 ( )( ) ( ).
12 1 1 1 1ˆ / 2T T T n qσ

−− − − −= − − −y R R H H R H H R y  (2.18) 

 
According to (2.1) and (2.14), conditional expectation and variance are obtained as follows: 
 
 ( )[ ] ( ) ( ) ( ) ,1ˆ ˆ| , , T Ty α −= + −x y h x r x R y Hψ β βE  (2.19) 

 
( )[ ] ( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) .

1

11 1 1

ˆ| , , 1 T

TT T T

y α σ2 −

−− − −

⎡= −⎣
⎤+ − − ⎥⎦

x y r x R r x

h x H R r x H R H h x H R r x

ψV
 (2.20) 

 
 
3. OPTIMUM DESIGN METHOD 
 
We present an optimum design method which enables to find minimum cost so as to satisfy member-end strain 
constraints, story drift constraints, and side constraints. Consider a planar steel building frame added 
Maxwell-type viscous dampers as shown in Figure 1. The nodal mass is taken into account in every node. 
Rigid diaphragms are assumed for floor slabs and the dampers connect these rigid diaphragms. 
 
3.1. Design Variable 
The cross sectional area of the i th member iA  is associated with the design variables { ; 1, , }l Xx l n= =x "
as ( )i l AlA x i= ∈ I  with the index set AlI . We simply write it as ( )iA x . The cross sectional area ( )iA x , 
second moment area ( )iI x  and section modulus ( )iZ x  are assumed to satisfy: 
 
 for beams: ( ) ( )( ) ( ) ( )( )2 1.5

4.0 , 1.5i i i iI A Z A= =x x x x   ( 1, , )Mi n= " , (3.1),(3.2) 

 for columns: ( ) ( )( ) ( ) ( )( )2 1.5
1.2 , 0.8i i i iI A Z A= =x x x x   ( 1, , )Mi n= " , (3.3),(3.4) 
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where Mn  denotes the number of members. Maxwell-type bilinear viscous elements which depend on velocity 
such as oil damper are added to the frame shown in Figure 1. The j th damper has bilinear damping 
coefficient: Djc  and 0.1 Djc× , relief load Rjf , maximum load Djf  as shown in Figure 2 and the stiffness

( )Djk x . The Djf  is also associated with x  as ( )Dj l Dlf x j= ∈ I  with the index set DlI , which we simply 
write as ( )Djf x . The damping coefficient ( )Djc x  and stiffness ( )Djk x  are given as follows: 
 
 ( ) ( ) ( )1/4.38Dj Djc f=x x , ( ) ( )2.0Dj Djk f=x x   ( 1, , )Fj n= "  (3.5),(3.6) 
 
where Fn  denotes the number of stories, and the units of ( )Djf x , ( )Djc x  and ( )Djk x  are kN , kN/(cm/ sec)

and kN/cm , respectively.  
 

  
velocity
[cm/s]3.2 15

damping force

cDj

fDj
fRj

0.1cDj

 
 Figure 1 Planar steel frame added Figure 2 Damping characteristic of damper 
 Maxwell-type viscous dampers 
 
3.2. Verification Model 
We perform the nonlinear time history response analysis by Newmark-β  method as the verification model. 
The design earthquake motions and the amplitude of the scaled design earthquakes are as shown in Table 1. 
 

Table 1 Design earthquakes (by Building Center of Japan) 

  Maximum amplitude  
  seismic velocity(cm/s)   seismic acceleration 2(cm/s )  

EL CENTRO 1940 NS  255  25  
TAFT 1952 EW  248  25  

BCJ-L1 (artificial seismic wave)  207  29  
 
Let ( )max

V
jδ x  denote the maximum story drift of the j th story to the design earthquakes by time history 

response analysis. In this model, the dampers are bilinear viscous elements, however, the columns and the 
beams are elastic elements for simplicity. We suppose that the nonlinear elasto-plastic elements can be used. 
 
3.3. Simple Model 
We use the extended CQC method as simple model. Let ω  and h  denote an eigen frequency and a modal 
damping ratio. Design response spectrum [Newmark and Hall, 1982] is modified for the design earthquakes 
shown in Table 1. The following design displacement response spectrum is used here. 
 
 ( ) ( ) ( ), min ,h , , hA V

D D DS h S Sω ω ω⎡ ⎤= ⎣ ⎦  (3.7) 
 ( ) ( ){ } ( )2, h =261.1 4.42-1.00ln 100h / cmA

DS ω ω  (3.8) 
 ( ) ( ){ } ( ), h =32.4 2.62-0.51ln 100h / cmV

DS ω ω  (3.9) 
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Let ( )max
S
jδ x  denote the maximum story drift to the design response spectrum by extended CQC method. Note 

that, in this simple model, the j th damper is linear viscous element which has the initial damping coefficient
of the verification model Djc . Additionally, we also use output of CQC method with no damper model, that is, 

0Djc =  as simple model. Let ( )0
max
S
jδ x  denote the maximum story drift to the design response spectrum by 

CQC method in the no damper model. ( )max
V
jδ x  will be in between ( )max

S
jδ x  and ( )0

max
S
jδ x . 

 
3.4. Original Optimum Design Problem 
The cost function of the frame model is given as 
 

 ( ) ( ) ( )

1 1

M Fn n

F i i D Dj
i j

f w l A w fρ
= =

= +∑ ∑x x x  (3.10) 

 
wehre il , ρ , Fw  and Dw  are the length of the i th member, the density of steel, the cost factor of frame and 
damper, respectively. We define the Original Optimum Design Problem (OODP) as follows: 
 

OODP 
min
x

 ( ) ( ) ( )

1 1

M Fn n

F i i D Dj
i j

f w l A w fρ
= =

= +∑ ∑x x x  (3.11) 

subject to  ( )
max max max

V
j j jδ δ δ− ≤ ≤x  ( )1, , Fj n= "  (3.12) 

 ( )
max max maxiε ε ε− ≤ ≤x  ( )1, , Fj n= "  (3.13) 

 L U
l l lx x x≤ ≤  ( )1, , Xl n= "  (3.14) 

 
where ( )maxiε x  denotes the maximum member-end strain of the i th member. maxjδ , maxε , L

lx  and U
lx

denote the maximum story drift, the maximum member-end strain, lower and upper bound of the design 
variable, respectively. For simplicity, we use extended CQC method for ( )maxiε x . 
 
3.5. Solution Algorithm with Bayesian Inference 
Time history response analysis needs much computational cost than extended CQC method. For this reason, 
the directly solving OODP is expensive in terms of the computer time. Besides, the time history response 
analysis is strongly nonlinear and non-convex, hence solving OODP is not numerically stable. Therefore, we 
present an optimization method with the statistical prediction model instead of solving OODP directly. The 
solution algorithm is shown as follows. 
 
Step 1. Solving the Simple Optimum Design Problem 

Firstly, we solve the following Simple Optimum Design Problem (SODP). 
 

SODP 
min
x

 ( ) ( ) ( )

1 1

M Fn n

F i i D Dj
i j

f w l A w fρ
= =

= +∑ ∑x x x  (3.15) 

subject to  ( )
max max max

S
j j jδ δ δ− ≤ ≤x  ( )1, , Fj n= "  (3.16) 

 ( )
max max maxiε ε ε− ≤ ≤x  ( )1, , Mi n= "  (3.17) 

 L U
l l lx x x≤ ≤  ( )1, , Xl n= "  (3.18) 

 
The solution of the SODP is denoted by 00ˆ { ; 1, , }ˆ Xlx l n= =x " . Extended CQC method is modal 
analysis for linear model, as a result solving SODP needs low computational cost.  
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Step 2. Carrying out computer experiments 
We carry out the computer analyses using both the simple model and the verification model at the set 
of the points { ; 1, , }i i n=x " . The points are chosen to be satisfied 
 

 ( 1, , , 1, , )L i U
l l l Xx x x i n l n≤ ≤ = =" " . (3.19),(3.20)

 0 0ˆ ˆ ( 1, , , 1, , )i
l l l l Xx r x x r i n l n−Δ ≤ ≤ −Δ = =" " . (3.21),(3.22)

 
where i

lx  and lrΔ  denote the l th element of ix  and change of the l th design variable, 
respectively. Here, we set the equations presented in section 2 as follows:  
 

 ( ) ( )( )
max( ) 1, ,j V
j Fy j nδ= =x x " , (3.23) 

 ( ) ( )0 0
1max max 1max max( ), , ( ), ( ), , ( )

F F

TS S S S
n nδ δ δ δ=h x x x x x" " . (3.24) 

 
In equation (3.23), the method in section 2 is applied for each 1, , Fj n= " . Thus, we get the training 
dataset of j th story ( ){ , ; 1, , }ji

j iy i n= =xD " . Various methods of choosing points are presented [for 
example, Santner, et al., 2003]. Here, the points are generated randomly for simplicity.  
 

Step 3. Finding the hyper parameters by cross validation 
We find the optimum hyper parameters of each ( )( )jy x  by minimizing leave-one-out cross-validated 
sum of squared error as follows:  
 

 ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ){ }
{ }

2

, 1

ˆˆ , arg min | , ,
kj j

k

n
j j j j j j

l l
k l

y y
α

α α
= ∈

⎡ ⎤= − ⎢ ⎥⎣ ⎦∑ ∑ x y
ψ

ψ ψI
I

E , (3.25) 

 
where { } { }1, , \k n k=I "  and ( ) ( )( );

k

j j
k ky k= ∈yI I . 

 
Step 4. Finding the optimum solution with Bayesian inference 

We solve the following Optimum Design Problem with Bayesian Inference (ODPBI).  
 

ODPBI 
min
x

 ( ) ( ) ( )

1 1

M Fn n

F i i D Dj
i j

f w l A w fρ
= =

= +∑ ∑x x x  (3.26)

subject to  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
max max max

ˆ ˆˆ ˆ| , , | , ,j j j j j jV V
j j jδ α ψ δ α δ⎡ ⎤ ⎡ ⎤+ ≤⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦x y x y ψE V  ( )1, , Fj n= "  (3.27)

 ( )
max maxiε ε ε− ≤ ≤x    ( )1, , Mi n= "  (3.28)

 L U
l l lx x x≤ ≤    ( )1, , Xl n= "  (3.29)

 0 0ˆ ˆl l l l lx r x x r−Δ ≤ ≤ +Δ  ( )1, , Xl n= "  (3.30)
 
The solution of ODPBI is denoted by ˆ { ; 1, , }l̂ Xx l n= =x " . ODPBI is based on the calibrated simple 
model, besides, the output of the calibration model is smoothed out, as a result solving ODPBI needs 
low computational cost and is numerically stable. 
 

Step 5. Verification of the solution 
We analyze the solution x̂  by verification model. If the output ( ) ˆˆ{ ( ); 1, , }j

Fy j n=x "  doesn’t satisfy 
the design criteria with sufficient accuracy, ( )ˆ ˆˆ{ , ( )}jyx x  is added to the training data set jD  as a new 
data. Moreover, we repeat from step3 until the solution satisfies the design criteria.  
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4. NUMERICAL EXAMPLE 
 
Consider 10-story and 3-span planar steel frames as shown in Figure 3. Cross sections of columns and beams 
are denoted by C1-C8 and G1-G10, respectively. The dampers of the 1-10th story are denoted by D1-D10. 
 

C1

C2

C2

C2

C3

C3

C3

C4

C4

C4

C1

C2

C2

C2

C3

C3

C3

C4

C4

C4

C5

C6

C6

C6

C7

C7

C7

C8

C8

C8

C5

C6

C6

C6

C7

C7

C7

C8

C8

C8

G1 G1 G1

G2 G2 G2

G3 G3 G3

G4 G4 G4

G5 G5 G5

G6 G6 G6

G7 G7 G7

G8 G8 G8

G9 G9 G9

G10 G10 G10

4m

4m

″

″

″

″

″

″

″

″

″10m 10m  
Figure 3 10-stories and 3-span model 

 
The structural damping ratio is assumed as 2%h = . A lamped mass of 326.5kg  and 163.3kg  are placed on 
every interior node and exterior node, respectively. The parameters of side constrains are as shown:  
 
 for beams:  2100cmL

lx = , 2400cmU
lx = , 290cmlrΔ = ,  

 for columns:  2200cmL
lx = , 2800cmU

lx = , 2180cmlrΔ = ,  
 for dampers:  0kNL

lx = , 100kNU
lx = , 30kNlrΔ = .  

 
The other parameters are as follows: max 0.00157ε = , max cm2jδ = , / ton25Fw = , / kN0.15Dw = . Here, 
practical constraint conditions are added to SODP and ODPBI. The condition is that a cross section of a 
column is smaller than cross sections of the lower columns ( 1 2 3 4C C C C> > > , 5 6 7 8C C C C> > > ). 
Firstly, we obtain the initial solution 0x̂  by solving SODP with sequential quadratic programming (step1). 
Next, computer experiments, of which the number is given by 100n = , are carried out (step2). Lastly, we 
obtain the optimum solution x̂  by 10 iterations of solving and updating ODPBI with sequential quadratic 
programming (from step3 to step 5). The solutions are shown in Table 2. The costs and maximum story drift 
angles by time history response analysis of the optimum solutions 0x̂  and x̂  are shown in Table 3, where 

400cmH =  denotes the story height. It can be observed that the costs of 0x̂  and x̂  are nearly the same. The 
maximum story drift angles of the solution 0x̂  violate the criteria max/ /5 1000 radj Hδ =  largely, by contrast, 
the maximum story drift angles of the solution x̂  approximately satisfy the criteria /5 1000 rad  because the 
predicted mean and variance have good accuracy.  
 
 
5. CONCLUSION 
 
The conclusion may be summarized as follows: 
(1) We present a new optimum design method of a building frame with viscous dampers using the calibration 

model, which is based on the statistical multi-level analysis. The method has similar accuracy as the 
verification analysis and the computational cost is much smaller than the verification analysis. 

(2) The efficiency of the presented method is demonstrated by numerical example. In the example, the 
predicted mean and variance have good accuracy. Consequently, the solution approximately satisfies the 
constraints. 
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Table 2 Optimum solutions 

Cross sectional area of Colum 2(cm )  Cross sectional area of Beam 2(cm )  Maximum load of Damper (kN)  

  0x̂   x̂     0x̂   x̂     0x̂   x̂   

C1  268.9  254.7  G1  253.7  256.1  D1  100.0  70.0  

C2  268.9  254.7  G2  323.4  321.6  D2  100.0  100.0  

C3  217.9  209.6  G3  238.1  244.8  D3  100.0  100.0  

C4  200.0  200.0  G4  281.6  310.4  D4  100.0  100.0  

C5  404.2  370.7  G5  250.3  250.3  D5  100.0  100.0  

C6  404.2  370.7  G6  235.8  247.1  D6  100.0  87.1  

C7  380.9  352.7  G7  191.7  231.3  D7  100.0  83.9  

C8  281.0  316.6  G8  248.6  201.8  D8  100.0  100.0  

   G9  108.8  162.4  D9  100.0  70.0  

   G10  100.0  118.2  D10  100.0  70.0  

 
 

Table 3 Cost and maximum story drift angle by time history response analysis of the optimum solution 

   Maximum story drift angles [1/1000 rad]  

 
Cost  

  1F  2F  3F  4F  5F  6F  7F  8F  9F  10F  

0x̂   2381.2  0
max ˆ( )/V Hδ x   3.00  4.16  4.32  4.42  4.74  4.39  4.64  5.20  5.09  6.59  

max ˆ( )/V Hδ x   3.75  5.09  4.94  4.90  4.98  4.80  4.35  4.77  4.55  4.78  

max ˆ( ) | /V Hδ⎡ ⎤⎣ ⎦x yE   3.74  4.93  4.95  4.81  4.99  4.58  4.61  4.84  4.65  4.56  

max ˆ( ) | /V Hδ⎡ ⎤⎣ ⎦x yV   0.00  0.07  0.03  0.19  0.01  0.03  0.39  0.16  0.10  0.44  
x̂   2398.6  

max maxˆ ˆ( ) ( ) | /V V Hδ δ⎡ ⎤− ⎣ ⎦x x yE   0.02  0.17  0.01  0.09  0.00  0.23  0.26  0.07  0.10  0.23  

 
Acknowledgments This work was partially supported by the grant from the Kyoto University Foundation and 
Grant-in-Aid for Scientific Research (No. 17206058) from Japan Society for the Promotion of Science. The 
authors are grateful for advice from Shiresta K. C. (Research Student, Kyoto University). 
 
REFERENCES 
 
Igusa, T., Der Kiureghian, A. and Sackman, J. L. (1984). Modal decomposition method for stationary response 
of non-Classically damped systems. Earthquake Engng. Struct. Dynamics, 12, 121-136 
 
Kennedy, M. C., and O’hagan, A. (2001). A Bayesian calibration of computer models (with discussion). 
Journal of the Royal Statistical Society, B, 63, 425-464 
 
Newmark, N. M., and Hall, W. J. (1982). Earthquake spectra and design, Earthquake Engineering Research 
Institute, Berkeley, CA. 
 
Rasmussen, C. E., and Williams, C. K. (2006). Gaussian Processes for Machine Learning, The MIT Press. 
 
Santner, T. J., Williams, B. J., and Notz, W. I. (2003). The design and Analysis of Computer Experiments, 
Springer-Verlag. 
 
Tsuji, M., Nagano, Y., Ohsaki, M. and Uetani, K. (2000) Optimum Design Method for High-Rise Building 

 


