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ABSTRACT : 
 
In this work explicit expressions are presented to obtain the fundamental frequency and the circumferential 
critical n* wave number for the longitudinal critical wave number m=1 for clamped-free vertical cylindrical 
tanks partially filled with water. The hydrostatic pressure is taken into count, free surface motion is neglected 
and dynamic pressure is considered like an added virtual mass. The solution is based upon an improved Flügge’s 
shells theory that is solved by means of the use of covariants and contravariants modals forms. The liquid is 
assumed as non-viscous and incompressible, and the coupling between the deformable shell and the liquid is 
taken into count. The solution for the liquid velocity potential satisfies Laplace equation and the relevant 
boundary condition. A regression model is used in order to fit mathematical results previously computed to 
obtain two explicit expressions with excellent approximation compared with experimental data. The equations 
are proposed for the case of steel tanks for a direct use in seismic analysis and design of storage tanks. 
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1. INTRODUCTION 
 
The dynamic features of cylindrical tanks are modified due to the presence of: hydrostatic pressure and inertial 
forces produced by the fluid; and the behavior of the free surface. These effects introduce serious complications 
in the seismic behavior´s analysis of the fluid-tank system. Cylindrical shells, partially filled or empty, show 
vibration modes for different longitudinal m and circumferential n modes (Figure 1) that are related with their 
respective natural frequencies ωmn. In this work we propose a methodology and compare with another results 
available in current literature to determine the fundamental frequency and the critical longitudinal numbers m 
and circumferential n for clamped-free (CF) vertical cylindrical tanks partially filled with water. 
 
There are many works related with the natural frequencies’ assessment for CF cylindrical shells and partially 
filled with water. Chiba et al. (1984 and 1985) consider the effects of the hydrostatic pressure through the 
nonlinear equations of Donnell’s shells theory which are solved by the Galerkin method; Koga and Tsushima 
(1990) consider the hydrodynamic pressure like a virtual mass and neglect hydrostatic pressure; Mazúch et al. 
(1996) uses finite element analysis and Lakis (1997) uses Sander’s shells theory with finite element analysis and 
considers the free surface of fluid to solve the problem and calculate natural frequencies. 
 
To solve this problem some authors use different shells theories sometimes including the contribution of the 
fluid characteristics like: hydrostatic pressure, added virtual mass or free surface to determine natural 
frequencies. Other authors relate the critical circumferential modes n* with fundamental frequency ω* only for 
empty tanks (Arango et al. 1989, Urrutia 1989, El Mously 2003). However, there are not explicit expressions to 
calculate de minimum frequencies or critical circumferential modes for clamped-free tanks partially filled with 
fluid. 
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Figure 1 Natural frequencies and modal forms. Longitudinal “m” and circumferential “n” modes 

 
Urrutia (1989) shows the invariance of the universal parameter (ωmn r)2 and this opens up a way to find the 
different relationships between all the parameters (for empty tanks): geometrics (longitude L, radio r and 
thickness h) with critical parameters ω*, m and n*, which are the fundamental frequency and critical 
circumferential modes. 
 
The fluid, governed by Navier-Stokes equations, is considered, like an incompressible and irrotational fluid. The 
influence of the fluid in the shells motion equations is included in the dynamic pressure equation and is 
introduced like an “added virtual mass”. The dynamic pressure equation, that provided the fluid on the 
cylindrical wall, neglected the free surface variation. 
 
The main idea of this work is to present two expressions, obtained by a regression model, which can be use to 
make the analysis and pre design of the vertical cylindrical tanks considering the fundamental frequency and the 
longitudinal and circumferential critical waves. Besides, we provide an applied methodology to shell theory that 
results in a simple mathematical model that allows to obtain the natural frequencies of a CF vertical cylindrical 
tanks partially filled with water. 
 
 
2. FLUID-TANK SYSTEM. MATHEMATICAL MODEL 
 
The variables to determine the natural frequencies for the longitudinal mode m and circumferential mode n of a 
cylindrical shell, where the walls of the shell are subjected to initial stresses by the hydrostatic pressure of the 
fluid are: the radio r, the height L, the constant thickness h, and the height of flow d in a partially filled tank 
(Figure 1). 
 
For the initial conditions of the shell it is necessary to consider the dynamics equations which include initial 
stresses on the shell wall (hydrostatic pressure). The terms that consider the initial stresses are those that in 
elastic stability are called parametric terms (Urrutia, 1984). For the vibration analysis it is necessary to consider 
dynamic pressure like a virtual added mass. 
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Finally, the mathematical model (MM) for the fluid-tank system (FTS), expressed in matrix notation, is 
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2.1. Dynamics equations of shell 
 
When a cylindrical tank is not submitted to some kind of external pressure, the terms  are those of the 
equations of Flügge (

ijL

1973). However, when the tank is partially filled, the parametric terms due to the 
hydrostatic pressure (Urrutia, 1984) appear as follows 
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2.2. Dynamic pressure 
 
For a rigid bottom tank the fluid is considered as non viscous and irrotacional, and the potential function that 
satisfies the Laplace's equation is 
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where m is the longitudinal number mode and n is circumferential number mode and where the free surface 
motion is neglected. 
 
The condition that considers coupling between the deformable shell and the liquid, is the boundary condition for 
the radial velocity 
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and we obtain the function 
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By neglecting the effect of the free surface (sloshing), we accept that sloshing pressure is zero as follows 
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Finally, the pressure equation on the shell wall where ρ= r, leads to the following conditions 
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where the quotient ( cv )ρρ  defined by Kwak and Kim (1991), is the virtual added mass factor, vρ  is the 
virtual mass of the fluid-tank system, fρ  is the fluid density, and ( )rmI mn  is the modified function of Bessel 
of the first kind and first order n. Virtual mass vρ  is different to those presented by Koga et al. (1990), who 
only presented results for natural frequencies when the tank is full or empty. The case of tanks partially filled 
with water is avoided. 
 
 
2.3. Covariant and contravariant functions method 
 
There are many methods to uncoupling the system equations of the fluid tank system, in this work we use 
covariant and contravariant functions (Urrutia, 1992). The displacement field u, v, w are proposed to satisfy 
boundary conditions for the shell CF 
 

ti

m n
mwmn

ti

m n
mvmn

ti

m n
mumn

enzFww

ensenzFvv

enzFuu

ω

ω

ω

θλ

θλ

θλ

∑∑
∑∑
∑∑

=

=

=

)cos()(

)()(

)cos()(

         (2.9) 

 
Inner product of functions is used in the motion equations where contravariant functions U, V, W are orthogonal 
to covariant functions u, v, w, and should be satisfied 
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S
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and the fluid-tank system becomes 
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This is a set of equations where the matrix determinant only depends on the value of the natural frequency ω of 
fluid-tank system. 
 
 
3. EXPERIMENTAL DATA 
 
With the purpose to compare the theoretical fundamental frequencies associated to its critical circumferential 
modes (from the mathematical model of this study) with the experimental data studies, we present the 
experimental studies from Mazúch et al. (1996) and Mistry et al. (1995) for steel cylinders with different 
geometric characteristics. Cylinders, C1 to C4, with fundamental frequencies, geometric and mechanical 
characteristics are presented in the Table 3.1. 
 

Table 3.1 Experimental fundamental frequencies (Exp), m=1, steel 
 C1 C2 C3 C4 
 Mazuch et al. 1996    Mistry et al. 1995 Mistry et al. 1995 Mistry et al. 1995

L [mm] 231 280.1 325.5 398 
r [mm] 77.25 99.325 99.41 99.58 
h [mm] 1.5 0.65 0.82 1.16 

E [N/mm2] 2.05E5 2.05E5 2.05E5 2.05E5 
ρc [Ns2/mm4] 7.8E-9  7.75E-9  7.75E-9  7.75E-9  

d/L ω* [Hz] n* ω* [Hz] n* ω* [Hz] n* ω* [Hz] n* 
0 616 3 --- --- --- --- --- --- 

0.5 --- --- 276 4 --- --- --- --- 
0.697 522 3 --- --- --- --- --- --- 
0.7 --- --- --- --- 213 3 --- --- 
0.8 --- --- --- --- --- --- 190 3 
1 388 3 --- --- --- --- --- --- 

 
 
4. THEORETICAL RESULTS  
 
To determine the fundamental frequency ω* of a cylindrical tank, is necessary to solve the fluid-tank system for 
the first critical longitudinal mode (m=1) and different circumferential waves n, being the minimum frequency 
the fundamental one that is associate to the critical circumferential mode n*.  
 
Real cylinders are analyzed and the absolute error between mathematical model results and experimental data 
are presented in Table 4.1. These differences show an excellent approximation for the water level dimensionless 
parameter d/L. The error in the theoretical result for the water level d/L is due mainly to the virtual mass given 
by Eqn. 2.8. This last equation presents a very good convergence in the mathematical model results. The 
excellent approximation that we get with the mathematical model allows inferring that the free surface terms in 
the fluid-tank system are not significant for the fundamental frequency assessments. 
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Table 4.1 Fundamental frequencies MM, m=1, steel 
 C1 C2 C3 C4 

d/L ω* [Hz] e [%] ω* [Hz] e [%] ω* [Hz] e [%] ω* [Hz] e [%] 
0 672.1 +9.11 --- --- --- --- --- --- 

0.5 --- --- 282.6 +2.38 --- --- --- --- 
0.697 509.3 -2.43 --- --- --- --- --- --- 

0.7 --- --- --- --- 208.7 -2.03 --- --- 
0.8 --- --- --- --- --- --- 180.9 -4.79 
1 396.2 +2.12 --- --- --- --- --- --- 

 
For a CF vertical cylindrical steel tank partially filled with water experimental data demonstrated that the critical 
circumferential mode n* stay constant without importing the water level, and this is proven with the 
mathematical model, like it is shown for the cylinders C1 to C4 in Table 4.2 where the experimental number 
wave n* it is shown with its integer value and theoretical n* it is shown with her value between parenthesis (n*). 
 

Table 4.2 Critical circumferential mode MM, m=1, steel 
 C1 C2 C3 C4 

d/L n* e [%] n* e [%] n* e [%] n* e [%] 
0 3 0 (4) --- (3) --- (3) --- 

0.5 (3) --- 4 0 (3) --- (3) --- 
0.697 3 0 (4) --- (3) --- (3) --- 

0.7 (3) --- (4) --- 3 0 (3) --- 
0.8 (3) --- (4) --- (3) --- 3 0 
1 3 0 (4) --- (3) --- (3) --- 

 
 
5. REGRESSION MODEL 
 
From the results of the mathematical model a parametric analysis for the steel cylinders is carried out, in the 
dimensionless parameters r/h and L/r from 50 to 1000 and from 1 to 10, respectively. In this intervals the 
mathematical pattern leads to excellent convergence in the calculation of the fundamental frequencies in the first 
way longitudinal mode m=1 and its corresponding critical circumferential wave number n*.  
 
The regression model (RM) that is proposed was based from Arango´s work et al. (1989) who presented two 
equations to calculated fundamental frequency and critical circumferential mode to simple supported horizontal 
empty cylindrical shells. Those expressions are now generalized to calculate fundamental frequencies from 
longitudinal mode m=1 and critical circumferential mode to CF vertical cylindrical steel tanks partially filled 
with water. 
 
The mathematical model is calibrated by multiple regression analysis by a minimal square method that gives 
Eqns. 5.1 to determine fundamental frequency and critical circumferential mode, with an accuracy factor 
R2=0.990 and R2=0.908, respectively 
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where mechanical characteristics of steel are the elasticity module E, mass density ρc and Poisson module ν. 
 
To compare how regression model, Eqns. 5.1, fits with experimental data we present Tables 5.1 and 5.2, and 
show fits the error between both models. The regression model for the fundamental frequencies has an excellent 
accuracy with experimental data because the maximum absolute error is 11.01%. Therefore we propose to use 
them to calculate fundamental frequency and circumferential mode to predesigned CF vertical cylindrical steel 
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tanks partially filled with water comparing in a direct way against the amplitude frequencies accelerogram. 
 

Table 5.1 Fundamental frequencies RM, m=1, steel 
 C1 C2 C3 C4 

d/L ω* [Hz] e [%] ω* [Hz] e [%] ω* [Hz] e [%] ω* [Hz] e [%] 
0 692.23 +11.01 --- --- --- --- --- --- 

0.5 --- --- 276 -7.53 --- --- --- --- 
0.697 515.62 +1.24 --- --- --- --- --- --- 

0.7 --- --- --- --- 213 +3.00 --- --- 
0.8 --- --- --- --- --- --- 190 +0.57 
1 410.73 +5.53 --- --- --- --- --- --- 

 
Tabla 5.2 Critical circumferential mode RM, m=1, steel 

 C1 C2 C3 C4 
d/L n* e [%] n* [Hz] e [%] n* [Hz] e [%] n* [Hz] e [%] 
0 3 0 --- --- --- --- --- --- 

0.5 --- --- 4 0 --- --- --- --- 
0.697 3 0 --- --- --- --- --- --- 

0.7 --- --- --- --- 4 33.33 --- --- 
0.8 --- --- --- --- --- --- 3 0 
1 3 0 --- --- --- --- --- --- 

 
It would be necessary to call more experimental data to improve the regression model and verify if the equations 
of the regression model uniformly converge where mathematical model does not converge. 
 
 
6. CONCLUSIONS 
 
Mathematical model are presented to determine the natural frequencies of CF vertical cylindrical tanks partially 
filled with water obtained from the improved Flugge’s equations uncoupled with the covariant and contravariant 
modal forms. The model includes initial stresses terms because of the hydrostatic pressure and dynamic pressure 
is consider like a virtual mass where free surface influence and the nonlinear thin shells theory effects are 
neglected. 
 
From the approximation of the mathematical model to the fundamental frequency ω* and the critical 
circumferential mode n*, it can be observed that the proposal virtual mass equation presents an excellent 
approximation for the different water level d/L, so is possible to neglect the terms influenced by the free surface 
in the fluid-tank system equations. 
 
Staring from experimental data and the mathematical model we propose an explicit expression from a regression 
model for the fundamental frequency ω* and an expression for the critical circumferential mode n*. The 
regression models given by Eqns. 5.1 present a good approximation with the literature experimental data. So it 
can be used to determine the fundamental frequencies ω* and critical circumferential modes n* with a simple an 
accurate calculation to predesigned CF vertical cylindrical steel tanks partially filled with water comparing in a 
direct way against the amplitude frequencies accelerogram. 
 
Once we have more experimental data is necessary to include them for extend the study and confirm the 
precision of the mathematical model and regression model. With a higher amount of numerical simulations is 
possible to obtain a general equation from the regression model for the fundamental frequencies calculus for any 
kind of shell’s material. 
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