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ABSTRACT : 

When civil structures are equipped with earthquake protective systems such as damping devices and base
isolators, they are likely to be non-classically damped. In addition, when the overall damping is increased to a
certain level, some modes will become over-damped. In such cases, the conventional treatment by using the
classical damping assumption (ignoring the non-classical damping effect and the over-damped modes) may
result in unacceptable design errors on the unsafe side. Based on the general modal response history analysis
formulation with over-damped modes developed by the authors (Song et al. 2008), this paper further extends it
to a response-spectrum analysis approach and proposes a general modal combination rule GCQC. Examples to
examine the accuracy and effectiveness of this approach are also given.  
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1. INTRODUCTION 
 
In earthquake response analysis of structures, the response spectrum method is commonly used as an alternative
approach to the response history analysis for determining the maximum values of the seismic responses of
classically damped structures. In this method, the modal peak responses are obtained using the prescribed
response spectrum. These modal maxima are then appropriately combined to estimate the peak values of the
responses of interest. The conventional response spectrum method is ideal to structures satisfying classical
damping condition. For structures that are strongly non-classically damped, the accuracy of the
square-root-of-sum-of-squares (SRSS) and the complete quadratic combination (CQC) rule becomes
questionable (Clough and Mojtahedi 1976, Warburton and Soni 1977 and Veletsos and Ventura 1986). For this
reason, several modal combination rules accounting for the effect of the non-classical damping are developed
(Singh 1980, Igusa et al. 1984, Ventura 1985, Gupta and Jaw 1986, Maldonado and Singh 1991 and Zhou et al.
2004). However, all combination rules developed in these literatures did not incorporate the over-damped
modes in the formulation and the response quantities considered in these rules are limited to
deformation-related response quantities. In this paper, on the basis of the general modal response history
analysis developed by the authors (Song et al. 2008) and the white noise input assumption as well as the theory
of random vibration, a general modal combination rule for response spectrum method are formulated to deal
with the non-classical damping and over-damped modes. This general modal combination rule is referred to as
‘General-Complete-Quadratic-Combination’ (GCQC) rule in this study. An over-damped modal response
spectrum is introduced to account for the corresponding peak modal responses. The accuracy of the new rule is
evaluated through an example by comparing it to the mean response history results. 
 
2. ANALYTICAL FORMULATION  
 
According to the general modal response analysis method formulated by Song et al. (2008), the responses of a
generally damped linear structure under seismic excitations can be expressed as the response history
combination of cN  complex modes and PN  over-damped modes ( P2 2CN N N+ = , N  is the structural
DOFs) : 
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where T
0 01 02 0( ) [ ( ), ( ),..., ( )]Nt x t x t x t=x  ( N∈R -- belongs to N dimension vector space in real field) represents a

response vector for most response quantity of interest for structural seismic evaluation and design, such as
relative displacement and velocity, absolute acceleration, inter-story drift and damping force etc. And

( )iq t ∈� R , ( )iq t ∈R  and P ( )iq t ∈R  are the under-damped mode (complex mode or simply termed as mode)
displacement, velocity and over-damped mode responses to seismic acceleration excitation g ( )x t ∈�� R ,

respectively, that is, ( )iq t� , ( )iq t  and P ( )iq t are the solutions of the following differential equations,
respectively: 
 
                      2

g C( ) 2 ( ) ( ) ( ) ( 1,2,..., )i i i i i iq t q t q t x t i Nξ ω ω+ + = − =�� � ��           (2) 
 
                           P P P

g P( ) ( ) ( ) ( 1,2,..., )i i iq t q t x t i Nω+ = − =� ��               (3) 
 
in which, iω ∈R  and iξ ∈R  are the circular natural frequency and damping ratio of the complex mode
respectively and P

iω ∈R  is the over-damped modal circular frequency. In Eq. (1), 0
N

i∈A R , 0
N

i∈B R and
P
0

N
i∈A R  are the coefficient vectors associated with ( )iq t� , ( )iq t  and P ( )iq t , respectively. These coefficient

vectors only depend on the structural modal parameters and are time invariant. The expressions of these
coefficient vectors for most response quantities can be found in Song et al. (2008). 
 
2.1 Definition of vector operation symbols 
 
For simplicity in subsequent formulation, we define symbol “ i ” as a vector element-wise operation. For
example, =c a bi  means that each element in vector c  is the product of the corresponding elements in a
and b , assuming that a , b  and c  have the same dimension. 2•a means taking the square for each element
in the vector a . 
 
2.2 Covariance of modal responses to stationary excitation 
 
Consider the input ground acceleration g ( )x t��  as a wide-band stationary process. Based on the theory of
random vibration, the responses of a linear system subjected to a stationary process are also stationary and the
covariance or mean squares of the response 0 ( )tx  from Eq. (1) is in the form of 
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Eq. (4) shows that it is necessary to compute the covariance of the response produced by two modes (e.g.
E ( ) ( )i jq t q t⎡ ⎤⎣ ⎦ ) in order to obtain the variance of 0 ( )tx . Before proceeding to calculate the covariance

produced by two modes, a number of expressions are listed as they would be required in the subsequent
formulations. They are: 
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 g0
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i iq t h t xτ τ τ= − ∈∫ �� R   and P P
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( ) ( ) ( )d
t

i iq t h t xτ τ τ= − ∈∫ �� R     (5a,b) 
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where ( )ih t  and P( )ih t  are the unit impulse response function of a complex mode and an over-damped mode,
respectively; j 1= −  is the imaginary unit; ( j )iH ω  and v ( j )iH ω  are the displacement and velocity
frequency response function of a complex mode with respect to excitation g ( )x t�� , respectively; and P ( j )iH ω is

the frequency response function of an over-damped mode with respect to g ( )x t�� . The displacement response

covariance term E ( ) ( )i jq t q t⎡ ⎤⎣ ⎦  in Eq. (4) is first examined. According to Eq. (5a), this term may be written as

 1 2 g 1 g 2 1 20 0
E ( ) ( ) ( ) ( )E ( ) ( ) d d

t t

i j i jq t q t h h x t x tτ τ τ τ τ τ⎡ ⎤ ⎡ ⎤= − − ∈⎣ ⎦ ⎣ ⎦∫ ∫ �� �� R  (8) 

Knowing that the input ground excitation g ( )x t��  starts from zero at the time instant 0t =  (i.e. g ( ) 0x t =��

when 0t ≤ ), it is reasonable to extend the lower limit of the integration in Eq. (8) to negative infinity as 

 1 2 g 1 g 2 1 2E ( ) ( ) ( ) ( )E ( ) ( ) d d
t t

i j i jq t q t h h x t x tτ τ τ τ τ τ
−∞ −∞

⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦∫ ∫ �� ��  (9) 

Now, suppose that the ground excitation g ( )x t��  is further considered as a white noise process with zero mean,

described by a constant power spectral density 0S . It follows that the term g 1 g 2E ( ) ( )x t x tτ τ⎡ ⎤− −⎣ ⎦�� ��  in Eq. (9)

becomes 

 g 1 g 2 0 1 2E ( ) ( ) 2π ( )x t x t Sτ τ τ τ⎡ ⎤− − = δ −⎣ ⎦�� ��  (10) 

where ( )τδ  is the Dirac function and it is defined as follows. 

 { 0             ( ) 0 0        
ττ τ

+∞ =δ = ≠    and   ( )d 1τ τ
+∞

−∞
δ =∫  (11a,b) 

In light of the inverse of Fourier transform, the Dirac function also can be expressed as 

 j1( ) e d
2π

ωττ ω
+∞ −

−∞
δ = ∫    or   1 2j ( )

1 2
1( ) e d

2π
ω τ ττ τ ω

+∞ − −

−∞
δ − = ∫  (12a,b) 

Substituting Eq. (12b) together with Eq. (10) into Eq. (9) and setting the upper integral limit to infinity to retain
the steady state response, Eq. (9) becomes 
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 ( )1 2j j
0 1 1 2 2E ( ) ( ) ( )e d ( )e d di j i jq q S h hωτ ωττ τ τ τ ω

+∞ +∞ +∞−

−∞ −∞ −∞
⎡ ⎤+∞ +∞ = ∈⎣ ⎦ ∫ ∫ ∫ R  (13) 

Denoting DD E ( ) ( )i j i jR q q⎡ ⎤= +∞ +∞⎣ ⎦  and making use of Eqs. (5) and (6) along with contour integration in

complex plane, the displacement covariance DD
i jR , shown by Eq. (13), may be written as  

 DD DD0
0

π( j ) ( j )d
2i j i j i j

i j i j i j

SR S H Hω ω ω ρ
ω ω ω ω ξ ξ

+∞

−∞
= − = ∈∫ R  (14) 

where DD
i jρ  is the well-known displacement correlation coefficient originally derived for the CQC rule (Der

Kiureghian 1981). Further, let i j=  in Eq. (14), it can be entirely expressed in modal displacement
variance terms. That is, 

 DD DD DD DD
C,      ( , 1,2,..., )i j i i j j i jR R R i j Nρ= =  (15) 

Following the similar procedures for the derivation of the modal displacement response covariance DD
i jR , the

modal velocity response covariance VV
i jR  and the covariance of the ith modal velocity and the jth modal

displacement VD
i jR  can also be derived as 

 VV DD DD VV
i j i j i i j j i jR R Rω ω ρ= ∈R  and VD DD DD VD ,      ( , 1,2,..., )i j i i i j j i j CR R R i j Nω ρ= ∈ =R (16a,b) 

where VV
i jρ  and VD

i jρ  are the modal velocity correlation coefficient and modal velocity-displacement
correlation coefficient. Their expressions and variations versus modal frequency ratio and modal damping ratio
can be found in Zhou et al. (2004) and Song et al. (2008). Noted that when i j= , the variance of velocity
response VV

i iR  and the covariance of velocity and displacement response VD
i iR  becomes 

 VV 2 DD0π
2i i i i i

i i

SR Rω
ω ξ

= =    and   VD 0i iR =  (17a,b) 

It is clear from Eq. (17) that the velocity variance and the displacement variance of a SDOF system is related by
the squares of its natural circular frequency and the modal displacement and velocity responses of a SDOF
system are orthogonal with each other under the white noise excitation assumption. The presence of VV

i jR and
VD
i jR  reflects the non-classical damping effect. 

Another important objective of this study is to consider the contributions of over-damped modes (if exist) to
evaluate the complete structural responses in modal response combination method. According to linear control
system theory, an over-damped mode corresponds to an independent first-order subsystem (integral unit), while
an under-damped mode (complex mode) associates with a second-order subsystem (oscillation unit). This is
clear if we compare Eq. (2) with Eq. (3) and Eq. (6) with Eq. (7). The detailed natural properties regarding to
the over-damped modes are described in Song et al. (2008). Now, considering the over-damped modal response
covariance term P PE ( ) ( )i jq t q t⎡ ⎤⎣ ⎦  in Eq. (4) and following the similar procedures as the above, we have 
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 PP P P P P
0 PE ( ) ( ) ( j ) ( j )d ,      ( , 1,2,... )i i i j i jR q t q t S H H i j Nω ω ω

+∞

−∞
⎡ ⎤= = − ∈ =⎣ ⎦ ∫ R  (18) 

Substitution of Eq. (7) into Eq. (18) and manipulation with contour integration in complex plane leads to 

 PP PP PP PP0
PP P

2π ,      ( , 1,2,... )i j i i j j i j
i j

SR R R i j Nρ
ω ω

= = =
+

 (19)  

in which 
P P

PP
PP P

2
,      ( , 1,2,..., )i j

i j
i j

i j N
ω ω

ρ
ω ω

= ∈ =
+

R  (20) 

is a newly derived correlation coefficient that accounts for the relationship between the over-damped mode
responses. Similarly, the modal displacement and the over-damped modal response covariance term

PE ( ) ( )i jq t q t⎡ ⎤⎣ ⎦  and the modal velocity and the over-damped modal response covariance term PE ( ) ( )i jq t q t⎡ ⎤⎣ ⎦�  in

Eq. (6) can be derived as 

 DP DD PP DP
i j i i j j i jR R R ρ=  and VP DD PP P DP

C P,      ( 1,2,... , 1,2,... )i j i i j j j i jR R R i N j Nω ρ= ∈ = =R  (21) 
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C P2 P P 2

2 2
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2 ( )
i i i j

i j
i i i j j

i N j N
ω ξ ω ω

ρ
ω ξ ω ω ω

= ∈ = =
+ +

R  (22) 

is another newly developed correlation coefficient which accounts for the correlation between the complex
modal displacements and the over-damped mode responses. Fig. 1 shows the variations of the correlation
coefficient PP

i jρ  versus P P
i jω ω , from which it is observed that the value of PP

i jρ  only depends on the

over-damped modal frequencies and it remains to be a significant component across the range of P P
i jω ω . Fig.

2 shows the variation of DP
i jρ  with respect to P

i jω ω  and damping ratio iξ . It is seen that the values of DP
i jρ

are significant, particularly at large damping level. Also, DP
i jρ  grows as the ratio P

i jω ω  approaches two and
decreases slowly beyond that value. The observations made from Figs. 1 and 2 suggest that the over-damped
mode may contribute significantly to the overall structural response and should be considered appropriately.
Finally, upon substitution of the above derived covariance into Eq. (4), one obtains 
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2.3 Development of response spectrum method 

It has been shown that the mean maximum modal response of a linear system over a specified duration to
stationary excitations is proportional to their respective root mean squares(Vanmarcke 1972), i.e., 
 

                    DD
max

( )i i i i iq t S p R= = ∈R  and P P PP

max
( )i i i i iq t S p R= = ∈R    (24) 
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Figure 1 Variation of correlation coefficient PP

i jρ  Figure 2 Variation of correlation coefficient DP
i jρ  

where the iS  is the ordinate of the mean displacement response spectrum and P
iS  is the ordinate of the mean

over-damped mode response spectrum. The idea of the over-damped mode response spectrum will be
introduced in a later section. The numerical value of ip , in general, does not differ greatly in magnitude from
mode to mode. Thus, for practice applications, it is reasonable to assign the same value to ip  for each mode as
well as for the combined responses. As a result, the following General-Complete-Quadratic-Combination rule
(GCQC rule) applicable to structural systems with non-classical damping and over-damped modes is derived. 
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As a special case of the GCQC, if the correlations between each mode are ignored; that is, when i j≠
DD 0i jρ = , PP 0i jρ =  as well as 0ijυ =  and DP 0i jρ =  for all i and j, Eq. (25) is reduced to 

 

                ( ) ( ) ( )
C P 2 22 2 2 2 P P

0 0 0 0max
1 1
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N
i i i i i i

i i

t S Sω
•• •

= =

= + + ∈∑ ∑x A B A R             (26) 

 
Eq. (26) is termed as General-Square-Root-of-Sum-of-Square combination rule (GSRSS rule). If the damping
matrix of a structure satisfies Caughey Criterion and all over-damped modes are ignored, Eqs. (25) and (26) can
be reduced to the conventional CQC and SRSS rules for classically-damped structures. However, the
formulation resulting from this study can be used to evaluate most peak response quantities of interest, such as
relative displacement and velocity, absolute acceleration, inter-story drift, story shear and damping force etc.
The most reduced form of Eq. (26), for example, can be used to evaluate the peak absolute acceleration of a
linear SDOF system, that is  
 
               2 2 2

A n n PA nmax
( ) 1 4 ( , ) 1 4 ( , )x t S T S Tξ ω ξ ξ ξ⎡ ⎤= + = + ∈⎣ ⎦�� R            (27) 

 
where nω , nT  and ξ  are the SDOF system’s natural frequency, period and damping ratio; and PA n( , )S T ξ is the
ordinate of pseudo-acceleration spectrum. If ξ  value is small, say, less than 15%, A PA nmax

( ) ( , )x t S T ξ≈�� . 
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3. OVER-DAMPED MODE RESPONSE SPECTRUM 

The over-damped mode response spectrum follows a similar definition as the conventional response spectrum
used in earthquake engineering. The objective of the over-damped mode response spectrum is to account for the
peak over-damped mode response contributions. Rewriting Eq. (3) as a general form of a first-order differential
equation with excitation input g ( )x t�� , we have 

 P P P
g( ) ( ) ( )q t q t x tω+ = −� ��  (28) 

Similar to the concept of conventional response spectrum, the over-damped mode response spectrum is defined
as a plot of peak over-damped mode responses P ( )q t , as a function of over-damped modal frequency Pω or
over-damped modal period P P2T π ω= (actually, PT  is termed as time constant of a first-order system in
control theory) under a given ground acceleration via Eq. (28). Unlike the conventional response spectrum, the
over-damped mode response spectrum has only one parameter, Pω , influencing the response and the
over-damped response, Pq (t), which has velocity dimension. The procedure to directly construct the
over-damped mode response spectrum consists of the following three steps: (1) Select the ground motion to be
considered; (2) Determine the peak over-damped mode responses represented by Eq. (28) using the selected
ground motion for different over-damped modal frequencies; and (3) The peak over-damped modal response
obtained offers a point on the over-damped mode response. As a result, it is found that the construction of
over-damped mode response spectrum relies on the availability of the ground acceleration histories. However,
when using the response spectrum approach, the site response spectrum specified in design codes is used, which
may vary from site to site, rather than ground acceleration histories. Therefore, the over-damped mode response
spectrum cannot be directly generated due to the unavailability of ground acceleration records. A conversion
approach to construct an over-damped mode response spectrum based on the 5% damping displacement
spectrum (or pseudo-acceleration spectrum) is also established to address this issue. The central idea is derived
from the fact that the ground motion power spectral density (PSD) that serves for input to either second-order
subsystem or first-order subsystem is the same. Thus, after establishing the relationship between PSD and the
peak response for both subsystems, we can further construct the connection between two peak responses and
then use 5% damping displacement spectrum to predict the compatible over-damped mode response spectrum.
The detailed procedure can be found in Song et al. (2008). 
 
4. EVALUATION OF THE GCQC RULE 
 
The accuracy and applicability of the proposed GCQC rule is evaluated by conducting response spectrum
analyses of a steel frame example building shown in Fig. 3. The detailed information of this building and the
ground motion acceleration ensemble used can be referred to Song et al. (2008). This example building is
aimed to represent a highly non-classically damped structure with over-damped modes. It is noted that in order
to evaluate the errors arising from the combination rule itself, the actual mean peak values of modal
displacement responses to the acceleration ensemble (considered as the displacement response spectra) are used
in the modal response combinations. The example building frame is analyzed by using linear response history
analysis to each ground motion record listed in the ensemble. The mean response analysis results (considered as
the exact values) are then used to examine the accuracy of the GCQC rule, including a comparison of the effect
of: (1) using the forced classical damping assumption, and (2) ignoring the over-damped modes when they are
present. Three sets of results are obtained and compared with the exact values. These three sets are obtained
under the following conditions: (a) results of the first set are obtained based on the proposed GCQC rule. The
state space approach is used to derive the mode shapes, modal frequencies and modal damping ratios. These
modal parameters are then used to generate the correlation coefficients and peak modal responses required in
the GCQC rule. The contributions from the over-damped modes are considered; (b) results of the second set are
based on the modal parameters obtained under the forced classical damping assumption. Similar to the GCQC
rule, these properties are used to generate the data required in the modal combination rule. The over-damped
modes are ignored when they are present. This process is often used for the design and analysis of structures
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with added damping devices. This rule is referred to as the CDA (forced classical damping assumption); and (c)
results of the third set are identical to the GCQC rule except that the over-damped modes are not taken into
account in the modal combination process. This consideration is aimed to examine the effects of the
over-damped modes in terms of response quantities. This rule is referred to as the EOM (exclude over-damped
modes). 

 
Figure 3 Configuration of the example building 
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Figure 4 Estimated errors due to GCQC,CDA and EOM 
 
Fig. 4 shows the estimation errors of each combination rule. It is shown that the GCQC provided excellent
results except it overestimated the first floor acceleration by about 35% where the damper is added. The CDA,
however, considerably underestimated the peak responses with one exception (overestimated the peak inter-
story velocity of the first floor by 25%). The error increases as the level of story increases. This overestimation
is more profound for inter-story velocity and floor acceleration. On the other hand, EOM overestimated the
inter-story velocity while it underestimated the floor acceleration at the first floor. For the rest of the response
quantities, the EOM provided conservative estimates. In general, the results show that using GCQC, in which
the over-damped modes, if exist, are considered, can estimate the peak responses more accurately. It is found
that the inter-story velocity and floor acceleration are significantly influenced by the over-damped modes. This
is particularly true for the floors at which dampers are installed. The responses estimated by using the forced
classical damping assumption deviate substantially from the exact values. Most of the responses are
underestimated, which is understandable, because the complex modal effects and over-damped modal
contributions are ignored by using this method. This implies that the utility of the forced classical damping
assumption should be further examined in the design and analysis of structures supplemented with dampers. 
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5. SUMMARY AND CONCLUSION 

There are many design and analysis approaches for damping device applications in new construction and
rehabilitation of civil engineering structures. The response spectrum method is one of the most common
approaches. When damping devices are added to complex and irregular structures, the structures are, in general,
heavily non-classically damped and some over-damped modes may develop. Under such circumstances, the
conventional CQC or SRSS rules for the response spectrum analysis method, assuming the structures are
classically-damped, may not provide accurate results. A general modal combination rule for the response
spectrum method, denoted as GCQC, is developed to accommodate the presence of non-classical damping and
over-damped modes. This GCQC rule retains the conceptual simplicity of the conventional CQC rule and offers
an efficient and accurate estimation of the peak responses of structures with added damping devices. In
addition, a transformation principle to construct the over-damped mode response spectrum from the given
design spectrum is also introduced briefly. This ensures the applicability of the GCQC rule in engineering
practice. Example study shows that structures with added dampers should be modeled as non-classically
damped and the over-damped modes should be included in the analysis in order to achieve more reliable
estimates. In this paper, the formulation is focused on a planar structure subjected to single directional
excitation. This formulation has been extended to the 3D generally damped structures under multi-component
excitation by the authors (Chu et al. 2008). 
 
6. ACKNOWLEDGEMENT 

The authors express their sincere appreciation for the support of the National Science Foundation through
MCEER (CMS 97-01471) and the Federal Highway Administration (Contract Number: DTFH61-98-C -00094).
 
REFERENCES 

Clough, R.W. and Mojtahedi, S. (1976). Earthquake response analysis considering non-proportional damping.
Earthquake Engineering and Structural Dynamics 4, 489-496. 
Chu, Y.-L., Song, J., Liang, Z. and Lee, G.C. (2008). A Unified Form for Response of 3D Generally Damped
Linear Systems under Multiple Seismic Loads through Modal Analysis. Proceeding of 14th World Conference
on Earthquake Engineering, October 12-17, 2008, Beijing, China. 
Der Kiureghian, A. (1981). A response spectrum method for random vibration analysis of MDF systems.
Earthquake Engineering and Structural Dynamics 9, 419-435. 
Gupta, A.K. and Jaw, J-W. (1986). Response spectrum method for nonclassically damped systems. Nuclear
Engineering and Design. 91, 161-169. 
Igusa, T, Der Kiurghian, A and Sackman, J.L. (1984). Modal decomposition method for stationary response of
non-classically damped systems. Earthquake Engineering and Structural Dynamics. 12, 121-136. 
Maldonado, G.O. and Singh, M.P. (1991). An improved response spectrum method for calculating seismic
design response. Part 2: Non-classically damped structures. Earthquake Engineering and Structural Dynamics,
20:7, 637-649. 
Singh, M.P. (1980). Seismic response by SRSS for nonproportional damping. Journal of the Engineering
Mechanics Division. (ASCE) 106:6, 1405-1419. 
Song, J., Chu, Y.-L., Liang, Z. and Lee, G.C. (2008). Modal analysis of generally damped linear structures
subjected to seismic excitations. Report No. MCEER-08-0005, February, 2008, MCEER, Buffalo, NY. 
Vanmarcke, E.H. (1972). Properties of spectral moments with applications to random vibration. Journal of the
Engineering Mechanics Division, 98, 425-446. 
Veletsos, A.S. and Ventura, C.E. (1986). Modal analysis of non-classically damped linear systems. Earthquake
Engineering and Structural Dynamics. 14, 217-243. 
Ventura, C.E. (1985). Dynamic analysis of nonclassically damped systems. Ph.D. Thesis. Rice University,
Houston, Texas. 
Warburton, G.B. and Soni, A.R. (1977). Errors in response calculations for non-classically damped structures.
Earthquake Engineering and Structural Dynamics 5, 365-376. 
Zhou, X., Yu, R. and Dong, D. (2004). Complex mode superposition algorithm for seismic responses of
non-classically damped linear MDOF system. Journal of Earthquake Engineering, 8:4, 597-641.  
 


