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ABSTRACT : 

This paper presents an original method of estimating the location and severity of damage in a framed building 
based on experimental measurements of its fundamental vibration modes. The procedure requires prior 
knowledge of the fundamental vibration modes of the undamaged structure and mass matrix, either through 
experimental tests or through an accurate analytical model. An important advantage of this method is that very
little experimental data is needed. To study the accuracy of damage identification under noisy conditions, we
conducted numerical simulations of a multi-story, framed building. The new method was also tested by 
measuring the physical vibrations of a scale model under controlled damage conditions. Both variations of the
method proved to be suitable, successfully identifying the location of damage and quantifying the stiffness
reductions under various conditions. 

KEYWORDS: experimental testing, structural systems, evaluation and retrofit, structural response,
modal analysis 

1. INTRODUCTION  
 
Accurate structural analysis requires evaluation of the differences between theoretical models and real
structures. Real structural stiffness, for example, varies over time due to building modifications, damage,
overload, seismic effects, and other sources of degradation. It is important to realize that structural damage and 
defects in the original construction are not always visible. The damage may be too slight to detect easily, or the
structural elements may be too difficult to access. It is nonetheless often necessary to evaluate the stiffness and
resistant capacity of a structure, in order to decide whether it should be repaired or demolished (Numayr et al.). 
This is especially true after natural disasters such as strong earthquakes. 
 
Several stiffness identification methods have been developed taking as data modal experimental results and
structural typology, leading to stiffness changes and damage evaluation (Baruch, Kabe, Papadoupulus et al.,, 
Lieven et al, Teughels et al., Pandey et al. ). There are specialized algorithms that allow one to locate and
quantify damage in cantilevers, shear buildings, and other types of structures (Garcés et al, Li et al). If the 
topology of the stiffness matrix is known, one can greatly reduce the number of modes and measurement points
required for accurate structural estimation. The method presented in this paper falls into this category.  
 
The goal of this study is to propose a new method of locating and quantifying changes in the stiffness and/or
mass matrix of a framed structure. We demonstrate that damage can be efficiently estimated using only one or
two modes. This approach takes advantage of the banded matrix shape typical of framed buildings, which
greatly simplifies the procedure. Although the algorithms proposed here are limited to framed structures, they
have the advantage of requiring few experimental tests. The displacement of only one floor need be measured 
(we do not consider rotations, which are more difficult to measure), and only one or two modes of the
undamaged structure need be known.  
 
The methodology was applied to a simplified scale model of a framed building in addition to numerical 
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simulations of an appropriate finite element model. Controlled stiffness modifications were imposed on the
structure, and free vibration tests were applied. The results of these tests show that structural damage can be
accurately quantified and localized. 
 
 
2. FRAMED BUILDING STIFFNESS ASSESSMENT 
 
2.1 Stiffness variation evaluation with known masses  
Let K and M be the stiffness and mass matrices respectively, and n the number of degrees of freedom. In this 
method, an experiment must be carried out on the undamaged structure to determine its initial dynamic
parameters, including the frequency and shape of at least one eigenpair (i.e., one frequency and its corresponding
vibration mode). 
The structure is assumed to be undamped. In an experiment, it will be subjected to free vibration tests. The system
complies with the equation 
 

KΦ = ΜΦ∆,   (2.1) 
 
where ∆ is the diagonal matrix of eigenvalues (λi = ωi

2, ωi being the ith frequency) and Φ is the matrix of 
eigenvectors (defining the shape of each vibration mode).  
 
Framed buildings with shear behaviour can be modelled using undeformable slabs with lumped mass values and 
columns of infinite axial stiffness. In this case K is a banded matrix, and M is a diagonal matrix:  
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where mi  is the lumped mass value of the ith floor and ki  is the lateral stiffness of the columns supporting the 
ith floor.  
 
To represent stiffness variations due to damage, each ki is multiplied by a reduction factor α. Then K becomes 
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K and M from Eqs. (2.3) and (2.4) can be introduced into Eq. (2.1) for a particular mode a: 
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The individual equations from system (2.5) are: 
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As there are αi unknown values, Eq. (2.6) can be rewritten as follows: 
 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−−
−

−
−−

−

−−−
−

n
ana

n
ana

aa

aa

n

n
n
a

n
an

n
a

n
an

n
a

n
an

aaaa

aaa

m
m

m
m

k
kk

kk
kk

φλ
φλ

φλ
φλ

α
α

α
α

φφ
φφφφ

φφφφ
φφφ

1
1

2
2

1
1

1

2

1

1

121
1

32
3

12
2

21
2

1
1

)(0
)()(

)()(
0)(

MM

L

OM

L

(2.7) 

 
or    [A] (x) = (c),      (2.8) 

 
Where (x) is the vector of unknown reduction factors αi.  Thus, the solution to Eq (2.8) for a particular mode 
shape a will provide the new stiffness values of the structure. 
 
3. NUMERICAL STUDY 
 
To demonstrate the effectiveness of the procedures developed in section 2, we now conducted a numerical study
of a reinforced concrete, multi-story, framed building. The dynamic parameters of the model were determined 
under two different conditions: a) undamaged, and b) damaged in two stories. The influence of noise in the 
modal data was also examined. 
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Figure 1 Numerical model of the structural axis. 

 
3.1 Numerical Model 
 
Figure 1 shows the geometry of a two-dimensional finite element structural model. It has five stories, each with
six 8 m bays, and its columns have a diameter of 0.80 m. The floor system is a slab with column capitals and
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drop panels. The thickness of each slab is 0.20 m. The modulus of elasticity is E=25,000 MN/m2. 

Natural frequencies and mode shapes along the structural axis were calculated by finite element analysis using
SAP2000. The slab masses were lumped into the nodes associated with each floor. The building was clamped at 
the ground level.  

 
3.2 Study cases 
 
Two cases were calculated: a) an undamaged structure; and b) a structure with stiffness reduction factors of 40%
and 20% at the first and third levels respectively.  
 
3.3 Effects of errors in dynamics measurements 
 
Uncertainties in modal data can affect the quality of damage estimation. To address this issue, a normally
distributed random perturbation is added in the values of frequencies and mode shapes calculated by the finite
element model. The noise was simulated by generating a random number between 0 and 1. Three cases were
used to study the effect of measurement noise on damage identification: 
 
Case a: The frequency was corrupted and the mode shape is uncorrupted, Case b: The frequency was 
uncorrupted and the mode shape is corrupted, Case c: Both frequency and mode shape were corrupted at the 
same signal-to-noise level. Three values of the noise level were considered: 2%, 5% and 10%.   
 
3.4 Results 
 
Tables 1, 2 and 3 list the structural damage inferred from mode shape measurements for the cases defined in 
section 3.3. In addition, we performed the calculation for several mode shapes of the damaged structure. The
following observations can be made: 
 
1. The quality of damage identification is much more sensitive to noise in the mode shapes (i.e., the 
eigenvectors) than noise in the frequencies. 
 
2. The quality of damage identification is independent of the mode utilized. 
 
3. In all cases, the methods described here accurately identify the location of the stiffness changes. The accuracy 
of the stiffness reduction factors depends on the noise level, but is usually quite good.  
 
Note that in this study using mode shapes 1 to 4, all the relative errors were smaller than 12% Only cases (b)
and (c), sometimes produced a large error in the inferred reduction factors. When the damage identification was
made using mode shape 5, the relative errors for cases b and c were 32.6% and 32.8% respectively. 
 
4. EXPERIMENTAL ASSESSMENT 
 
4.1 Simplified scaled frame model 
 
To verify the effectiveness of this damage estimation method, we also tested the dynamic modes of a physical
model. The dynamical parameters of the model were determined from the experimental data.  
The model (Figure 2) is a simplified frame building, with three levels and only one span per side. The 4 
columns are steel bars, and the floors are rigid acrylic plastic slabs. To simplify the structural model we assumed
that only lateral floor displacements are important, which depend only on the flexural behaviour of the columns.
A single lateral stiffness coefficient can then be determined for each level.  Table 4 presents the geometric and
mechanical properties of the model.  
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Table 1 Relative errors Case a 

 
 
 

Table 2 Relative errors Case a 
 

Storey 2 5 10 2 5 10 2 5 10 2 5 10 2 5 10
1 0.66 1.43 3.31 0.33 0.95 2.1 1.94 4.93 10.1 0.75 1.88 3.99 6.78 16.4 32.6
2 0.52 1.99 4.25 6.02 2.89 1.25 2.14 5.4 11.3 0.22 0.48 0.98 1.34 3.38 7.24
3 2.1 5.11 9.89 1.03 2.57 5.43 0.3 0.65 1.26 1.1 2.86 6.11 0.59 1.43 2.92
4 1.16 4.06 9.06 0.31 0.43 0.65 0.38 0.98 2.03 0.25 0.35 0.52 0.07 0.11 0.2
5 1.11 2.03 2.69 0.44 0.44 0.44 0.18 0.23 0.31 0.14 0.2 0.31 0.04 0.02 0.14

Noise Level (%)
Mode shape 1 Mode shape 2 Mode shape 3 Mode shape 4 Mode shape 5

 
 
 

Table 3 Relative errors Case a 

 
 
 
4.2 Data acquisition and processing 
 
The model was clamped to an experiment bench, and submitted to free vibration tests by applying specified
initial displacements or velocities to each slab (along the x-axis). Vibration responses were registered with 
unidirectional accelerometers Kinemetrics FBA-11 and processed with an Altus K2 Kinemetrics signal
processing device. Measurements were taken for a frequency range of 0-50 Hz. and the dynamic response was 
captured by 3 accelerometers.  
 

 

Storey 2 5 10 2 5 10 2 5 10 2 5 10 2 5 10
1 1.12 2.67 5.4 0.23 0.85 2 1.84 4.84 10 0.85 1.99 4.09 6.89 16.6 32.8
2 0.27 0.98 2.35 6.12 3 1.15 2.24 5.5 11.4 0.12 0.38 0.88 1.24 3.28 7.14
3 2.01 5.01 9.78 1.11 2.65 5.52 0.38 0.73 1.34 1.18 2.95 6.2 0.67 1.51 3
4 0.8 2.7 6.44 0.21 0.33 0.55 0.28 0.88 1.93 0.35 0.45 0.62 0.03 0.01 0.09
5 0.28 0.27 1.15 0.34 0.34 0.34 0.08 0.13 0.21 0.04 0.1 0.21 0.14 0.07 0.04

Noise Level (%)
Mode shape 1 Mode shape 2 Mode shape 3 Mode shape 4 Mode shape 5

Storey 2 5 10 2 5 10 2 5 10 2 5 10 2 5 10
1 0.08 0.15 0.26 0.11 0.17 0.29 0.06 0.13 0.24 0.09 0.16 0.27 0.37 0.45 0.56
2 0.22 0.16 0.04 8.25 8.32 8.45 0.12 0.18 0.3 0.02 0.05 0.17 0.03 0.03 0.15
3 0 0.06 0.15 0.1 0.16 0.25 0.11 0.16 0.25 0.03 0.08 0.17 0.09 0.15 0.24
4 0.4 0.34 0.22 0.19 0.12 0.01 0.06 0.13 0.24 0.24 0.3 0.41 0 0.07 0.19
5 0.71 0.64 0.53 0.4 0.33 0.22 0.11 0.04 0.08 0.06 0.01 0.12 0.13 0.2 0.31

Noise Level (%)
Mode shape 1 Mode shape 2 Mode shape 3 Mode shape 4 Mode shape 5
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Figure 2 Tested model. 
 

Table 4 Geometric and mechanical properties of the model 
Total height 0.321 m 
Bay length  0.20 m 

Storey 1 
Storey 2 

Cross section of the 
columns  
(w x t) Storey 3 

0.1777 m x 3.86 x 10-3m 
0.1798 m x 3.86 x 10-3m 
0.1772 m x 3.86 x 10-3m 

Total mass (model and  accelerometers) 2.716 kg 
Modulus of elasticity  213.6 GPa 

 
 
5. STUDY CASES AND IDENTIFICATION RESULTS 
 
After determining the initial stiffness characteristics of the model, its components were modified in a predefined
sequence to simulate progressive damage and verify the identification procedures. To simulate structural
damage, the widths of the steel columns were decreased. We considered the following case studies:  
 
Case a:  the initial, undamaged structure, Case b: 18% stiffness reduction of columns at the first level, Case c: 
40% stiffness reduction of columns at the first level, Case d: 19% stiffness reduction of columns at the 2nd 
level, and 40% at the third level. 
 
The vibration modes are shown in Figure 3. Damage identification was performed using the two methods
presented in sections 2.1 and 2.2. The undamaged model was employed as a reference to determine the
efficiency of the identification procedures and evaluate the stiffness reduction factors αi.  
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 Figure 3 Experimental Mode Shapes for each case. 

Table 5 shows the inferred stiffness reduction factors for cases (b), (c) and (d) using the methodology of section 
2. The method provides good approximations to the damage values of each floor, and also shows the location of
the damage. The quality of damage identification is independent of the mode shape utilized. However, the
stiffness reduction factors were less accurate when mode 3 was used. 
 

Table 5 Stiffness changes for each level with known mass values 

 
 

 
6. CONCLUSIONS 
 
The damage identification procedure was proposed. This procedure may be applied to framed buildings with 
shear behaviour to evaluate structural damage in terms of stiffness reduction and determine the location of the
damage. Although this methodology is limited to framed structures, it has the advantage of using only one
modal shape coordinate and a limited number of modes. Other methods may have more extensive applications, 
but they require more refined finite element models and a complex and expensive series of experimental tests.
Typically a great many modal shape coordinates require measurement, including some which are difficult to
obtain such as rotations. 
 
Numerical simulations of a finite element model have demonstrated good agreement between the estimated and
actual damage. The accuracy of the method is independent of the mode utilised, but the quality of damage
identification is sensitive to noise in the mode shapes. The results are more stable under variations of the
measured frequency. Since errors in the mode eigenvectors of the damaged structure will affect the damage
identification, special attention must be paid to the signal processing. 
 
The method was also applied to a physical scale model of a three-level framed building. Mode shapes were 
measured in the undamaged structure and three cases representing damaged conditions. The prodecure
identified with precision the stiffness change as well as the damage location. 
 

Case b Case c Case d
Real 
Value Identified Real 

Value Identified Real 
Value Identified

Mode 
1

Mode 
2

Mode 
3

Mode 
1

Mode 
2

Mode 
3

Mode 
1

Mode 
2

Mode 
3

α1 0.82 0.71 0.75 0.61 0.6 0.49 0.51 -- 1 0.98 0.96 0.96
α2 1 0.99 1.01 0.98 1 1 0.98 -- 0.81 0.76 0.71 0.6
α3 1 0.99 0.98 0.99 1 1.01 0.97 -- 0.6 0.56 0.57 0.55



The 14
th  

World Conference on Earthquake Engineering    
October 12-17, 2008, Beijing, China  
 
 
Further research is needed to demonstrate whether damage localization and quantification can be obtained by
the present procedure for a real-life structure. 
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