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ABSTRACT : 

Rooted in structural dynamics, two procedures for estimating peak responses of linearly-elastic “ordinary” 
bridges crossing fault-rupture zones are presented: response spectrum analysis (RSA) procedure and a static 
analysis (SA) procedure. These procedures estimate the peak response by superposing peak values of
quasi-static and dynamic responses. The peak quasi-static response in both procedures is computed by static 
analysis of the bridge with peak values of all support displacements applied simultaneously. In the RSA
procedure, the peak dynamic response is estimated from the dynamic analysis including all significant modes,
which is simplified in the SA procedure to static analysis of the bridge for appropriately selected forces. Both 
procedures are shown to provide estimates of peak response that are close to those from the “exact” response
history analysis. Furthermore, it is shown that usually only one mode – the most dominant mode – is sufficient 
in the RSA procedure. These procedures utilize the “effective” influence vector that differs from that for the
spatially-uniform excitation. Furthermore, the RSA procedure uses the response spectrum for the reference
support excitation (including permanent offset of the ground due to fault rupture) that differs from the standard
California Department of Transportation (CALTRANS) spectrum. The presented procedures idealize the
spatially varying support excitation by proportional multiple-support (PMS) excitation in which motions at 
various supports of the bridge crossing a fault-rupture zone are proportional to the motion at a reference
location. 
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1. INTRODUCTION  
 
Recent earthquakes have demonstrated the vulnerability of bridges that cross fault-rupture zones. Several bridges 
were seriously damaged as a result of rupture of causative faults in the 1999 Chi-Chi earthquake (EERI, 2001; 
Yen, 2002), 1999 Kocaeli earthquake (EERI, 2000), and 1999 Duzce earthquake (Ghasemi et al., 2000). While 
avoiding building bridges across faults may be the best practice, it may not always be possible to do so, especially 
in regions of high seismicity, such as California.  

Bridges crossing fault-rupture zones will experience ground offset across the fault and hence spatially-varying 
ground motion. While site-specific seismological studies to define spatially-varying ground motions and rigorous 
response history analysis (RHA) are necessary for important bridges on “lifeline” routes, such investigations may 
be too onerous for “ordinary” bridges whose design is governed by the CALTRANS Seismic Design Criteria 
(SDC) (CALTRANS, 2006). “Ordinary” bridges are defined as normal weight concrete bridges with span lengths 
less than 90 m supported on the substructure by pin/rigid connections or conventional bearings. The bent caps of 
“ordinary” bridges terminate inside of the exterior girders, and their foundations consist of spread footings, piles, 
or pile shafts with underlying soil that is not susceptible to liquefaction, lateral spreading, or scour. For such 
structures, simplified procedures for estimating seismic demands are needed to facilitate their seismic evaluation 
and design. This paper presents simplified procedures – simpler than response history analysis (RHA) but rooted 
in structural dynamics theory – for estimating seismic demand of bridges crossing fault-rupture zones. 
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2. THEORETICAL BACKGROUND 
  
A recently completed investigation by Goel and Chopra (2008) indicated that motions across various supports of a 
bridge in fault-rupture zone are essentially proportional to each other. Thus the displacement at support l is given 
by 

 ( ) ( )gl l gu t u tα=  (2.1) 

in which ( )gu t  is the displacement history of motion at a reference location, and lα  is the proportionality 
constant for the lth support. For such proportional multiple-support excitation, the total displacement of a 
linearly-elastic bridge at various structural degrees-of-freedom may be computed from 

 eff
1

( ) ( ) ( ) ( ) ( )
N

t s
g n n n

n
t t t u t D t

=
= + = + Γ∑u u u ι φ   (2.2) 

in which su  is the quasi-static response, u  is the dynamic response, effι  is the “effective” influence vector 
defined as the vector of displacements at all structural degrees of freedom due to simultaneous static application of 
all support displacements with value equal to lα  at the lth support, eff

T T
n n n nΓ = m mφ ι φ φ , m  is the mass 

matrix, nφ  is the nth mode shape of the bridge, and ( )nD t  is the deformation response of the nth-mode 
single-degree-of-freedom (SDF) system subjected to the reference ground motion ( )gu t  governed by 

 ( )22n n n n n n gD D D u tζ ω ω+ + = −  (2.3) 

where nω  and nζ  are the frequency and damping ratio, respectively, of the nth-mode SDF system.  

Equation (2.2) implies that total response of a linearly-elastic bridge may be computed by superposition of the 
quasi-static response, su , and the dynamic response, u .  For linearly-elastic systems, it has been demonstrated 
(Goel and Chopra, 2008) that the peak values of the total responses, t

ou  and t
or , of bridges in fault-rupture zones 

may be estimated to a useful degree of accuracy by adding peak values of the quasi-static response, s
ou  and s

or , 
and dynamic response, ou  and or : 

 t s t s
o o o o o or r r+ +u u u  (2.4) 

Such superposition of peak quasi-static and dynamic responses was found to be reasonable because for motions in 
fault-rupture zones, the peak value of the dynamic part of the response generally occurs during time phase after 
the quasi-static part of the response reaches, and maintains its peak value (Goel and Chopra, 2008). 

The peak value of the quasi-static response, s
or , is due to static application of the peak values of ground 

displacements, l gouα , simultaneously at all supports where gou  is the peak value of the ground displacement at 
the reference support. Presented next are two procedures to determine the peak value of dynamic response: 
response spectrum analysis and static analysis.  

2.1. Response Spectrum Analysis (RSA) Procedure 
The peak dynamic response is estimated by using SRSS or CQC rule, as appropriate, to combine the peak modal 
responses. Although not rigorously valid for ground motions in close proximity to the causative fault, these modal 
combinations will be used and their accuracy evaluated. The peak value of the dynamic response, or , is computed 
by implementing the following steps: 
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1. Compute the vibration periods, nT , and mode shapes, nφ , of the bridge.  
2. Identify the significant modes that need to be considered in the dynamic analysis based on the modal 

contribution factors as follows: 
2.1. Compute the “effective” influence vector, effι , the vector of displacements in the structural DOF 

obtained by static analysis of the bridge due to support displacements lα , applied simultaneously in the 
appropriate direction: fault parallel or fault normal. 

2.2. Compute the static response, str , by static analysis of the bridge due to forces effmι  applied at the 
structural DOF. 

2.3. Compute the modal static response, st
nr , from static analysis of the bridge due to forces n n n= Γs mφ  

applied at the structural DOF, where T T
effn n n nΓ = m mφ ι φ φ . 

2.4. Compute the modal contribution factor for the nth mode, 
stst

n nr r r= (Chopra 2007: Section 12:10). 
2.5. Repeat Steps 2.3 and 2.4 for all modes.  
2.6. Select the number of significant modes, J, such that the error in the static value of response quantity r, 

1
1

J

J n
n

e r
=

= −∑ , is less than acceptable value, e.g., 0.05.  

3. Compute the peak value of the nth mode dynamic response, st
no n nr r A=  in which st

nr  is the modal static 
response (Step 2.3) and nA  is the ordinate of the pseudo-acceleration spectrum for the reference support 
acceleration ( )gu t  corresponding to the nth-mode SDF system. 

4. Repeat Step 3 for all significant modes identified in Step 2. 
5. Combine the peak modal response by SRSS or CQC modal combination rule, as appropriate, to obtain the peak 

dynamic response, or . 
 
2.2 Static Analysis Procedure 
The static analysis procedure is developed by recognizing that: (1) In many cases, the individual modal responses 
in the RSA procedure tend to attain their peak values at essentially the same time (Goel and Chopra, 2008) 
indicating that the algebraic sum of the peak responses (instead of CQC or SRSS combinations) should provide a 
reasonable estimate of the peak value of the combined response; and (2) for most bridges, the value of A  may be 
conservatively approximated by 2.5 goA u  and the peak dynamic response may be conservatively estimated by 
static analysis of the bridge due to lateral forces eff2.5 gou= mι . Thus, the peak value of the dynamic response, 

or , in the static analysis procedure is computed by implementing the following steps: 

1.  Compute the effective influence vector, effι , as the vector of displacements in the structural DOF obtained by 
static analysis of the bridge due to support displacements lα , applied simultaneously. 

2.  Estimate the dynamic response or  by static analysis of the bridge due to lateral forces eff2.5 gou= mι .  
 
3. STRUCTURAL SYSTEMS, MODLEING, AND RESPONSE QUANTITIES 
  
The structural systems considered in this investigation were as follows: (1) a three-span symmetric bridge (Figure 
1a); (2) a three-span unsymmetric bridge (Figure 1b); (3) a four-span symmetric bridge (Figure 1c); and a 
four-span unsymmetric bridge (Figure 1d). These bridges are supported on abutments at the two ends and 
intermediate single-column bents. The span lengths and bent heights are shown in Figure 1. The bases of columns 
in the bents were fixed (restraint for all six degrees-of-freedom). The deck, which is expected to accommodate 
two traffic lanes, was selected as a multi-cell box girder, and columns selected were circular sections with helical 
transverse (or hoop) steel and longitudinal steel arranged at their periphery. The area of longitudinal steel was 
selected as 3% of the gross columns area and hoop steel was selected as 1% of the column volume to represent 
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well-confined columns. The fault was assumed to be located between bents 2 and 3 of the selected bridges (Figure 
1). The selected bridge systems were analyzed using the structural analysis software Open System for 
Earthquakes Engineering Simulation (OpenSees) (McKenna and Fenves, 2001). The modeling details are 
available in Goel and Chopra (2008).  

The four selected bridges (three-span symmetric, three-span unsymmetric, four-span symmetric, and four-span 
unsymmetric) and two shear-key cases (without shear keys and with elastic shear keys) provide a total of eight 
bridge configurations: (1) Three-span symmetric bridge without shear keys; (2) Three-span symmetric bridge 
with elastic shear keys; (3) Three-span unsymmetric bridge without shear keys; (4) Three-span unsymmetric 
bridge with elastic shear keys; (5) Four-span symmetric bridge without shear keys; (6) Four-span symmetric 
bridge with elastic shear keys; (7) Four-span unsymmetric bridge without shear keys; and (8) Four-span 
unsymmetric bridge with elastic shear keys. Seismic responses of these eight bridges, referred to as Bridges 1 to 8, 
are examined in this paper.  

The structural systems considered in this investigation do not necessarily represent “actual” bridges. They are 
selected to demonstrate the accuracy of the presented procedures for varying parametric conditions: number of 
spans (three-span versus four-span bridges); asymmetry in bridge geometry (symmetric versus asymmetric 
bridges); and shear-key condition (elastic shear keys versus no shear keys). It is expected that if the presented 
procedures provide reasonable estimates of seismic responses for a range of structural systems considered in this 
investigation, they would provide accurate results for actual “ordinary” bridges as well. 
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Figure 1. Bridges considered: (a) three-span symmetric bridge, (b) three-span unsymmetric bridge; (c) four-span 
symmetric bridge; (4) four-span unsymmetric bridge. 

The response quantities considered in this investigation are the column drift and deck displacement at the 
abutment. The column drift, which indicates deformation demand in the column, is defined as the displacement at 
top of the column relative to its base displacement. The deck displacement at the abutment, which is used to 
estimate the relative displacement of the deck from the abutment, is defined as the displacement of the deck at the 
abutment relative to the displacement at the top of the abutment. 

4. GROUND MOTIONS 
 
Ground motions are needed at bridge supports in close proximity to the fault (Figure 1). Unfortunately, to date, 
ground motions have never been recorded at such fine spacing in close proximity to the causative fault. For this 
investigation, motions were simulated at stations spaced 15 m apart (Figure 2) due to a magnitude 6.5 earthquake 
in the fault-normal, fault-parallel, and vertical directions across a fault rupture zone (Dreger et al. 2007). Resulting 
from this simulation, the fault-parallel component of ground acceleration and displacement at stations 1-6 on a 
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vertical strike-slip fault (fault with dip = 90°, rake = 180°) are presented in Figure 3. Motions on other types of 
faults and in other directions are not presented here for brevity; they may be found elsewhere (Goel and Chopra, 
2008; Dreger et al. 2007). These simulated motions are considered for analyzing the selected bridges.  

Fault

Stn. 1 Stn. 2 Stn. 3 Stn. 4 Stn. 5 Stn. 6

15 m 15 m 15 m 15 m15 m 15 m

 
Figure 2. Location of stations across the fault where spatially-varying ground motions were simulated. 
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Figure 3. Displacement and acceleration in fault-parallel direction at six stations across a vertical strike-slip fault 
during magnitude 6.5 earthquake. 
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Figure 4. Comparison of normalized 5%-damped elastic response spectrum for ground motions in fault-rupture 
zone with the CALTRANS SDC spectrum. 

Figure 4 shows the pseudo-acceleration response spectrum for the fault-parallel and fault-normal components of 
ground motion, with permanent offset, in very close proximity (say, roughly, 15 meters) to the causative fault. The 
pseudo-acceleration scale has been normalized by the peak ground acceleration ( goA u ). Also included is the 
CALTRANS SDC spectrum for peak ground acceleration (PGA) of 0.4g, soil type B, and earthquake magnitude 
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6.5±0.25. Although CALTRANS SDC provides spectrum for PGA values in the range of 0.1g to 0.6g for each 
earthquake magnitude and soil type, only one spectrum for 0.4g PGA is included here for clarity. Figure 4 shows 
that the spectrum for motions in the fault-rupture zones differs considerable from the CALTRANS SDC spectrum. 
Therefore, the CALTRANS SDC spectrum is inappropriate for analysis of bridges crossing fault-rupture zones. 

5. SIGNIFICANT VIBRATION MODES 

The modes of a bridge that are excited by motions in the fault-rupture zone may differ significantly from those 
excited by the spatially uniform ground motion. For this purpose, consider the first six mode shapes of a 
three-span symmetric bridge (Figure 5). Also consider the deflected shape of the bridge associated with the 
effective influence vector for multiple-support excitation in fault-rupture zones and spatially-uniform excitation 
for bridges on one side of the fault (Figure 6). The effective influence vectors exhibit significant torsional motion 
about the vertical axis for a bridge across a fault (Figure 6a), in contrast to the translational motion of the bridge on 
one side of the fault (Figure 6b). Therefore, predominantly torsional modes are excited for bridges crossing 
fault-rupture zones whereas predominantly transverse modes are excited in bridges subjected to spatially uniform 
excitation. A comprehensive discussion on this subject is available in Goel and Chopra (2008). 
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Figure 5. Vibration periods and mode shapes of a three-span symmetric bridge without shear keys. 

(a) (b)  
Figure 6. Deflected shapes associated with the “effective” influence vector of a three-span symmetric bridge: (a) 
excitation in fault-parallel direction; and (b) spatially-uniform excitation.  

6. ACCURACY OF PROPOSED PROCEDURES 

The procedures presented to estimate the peak response are based on two approximations: (1) superposing the 
peak values of quasi-static and dynamic responses; and (2) estimating the peak dynamic response by the RSA or 
the static analysis procedure. In this section, the combined errors due to both approximations are investigated by 
comparing the peak values of the responses determined by approximate procedures and by RHA, the “exact” 
procedure. For this purpose, presented are the transverse responses of bridges due to fault-parallel motions 
resulting from a rupture on a vertical strike-slip fault (Figure 7). Also included are results from the RSA procedure 
considering contribution of only the dominant mode, the mode with the largest modal contribution factor; these 
results are denoted as RSA:1-Mode.  

The presented results show that both versions of RSA lead to estimates of seismic demands that are very close to 
those from the “exact” RHA procedure, indicating that the most-dominant mode contributes essentially all of the 
dynamic response of the selected systems.  

The presented results also show that the static analysis procedure that avoids dynamic analysis also provides a 
reasonably good estimate of the seismic demand, which is slightly conservative in most cases. Such an 
overestimation is expected because the simplified procedure is based on an upper bound estimate of the 
pseudo-acceleration = 2.5 gou . However, it underestimates the seismic demand slightly in a few cases, e.g., bent 2 
drift for bridges 3 and 7 (Figure 7b) because these bridges have two nearly most-dominant modes and contribution 
of these two modes to some seismic demands tend to cancel out.  
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Figure 7. Comparison of seismic demands determined by three proposed procedures – RSA, RSA:1-Mode, and 
static analysis (SA) – with those from the “exact” RHA procedure: (a) deck displacement at abutment 1; and (b) 
column drift in bent 2. Results are for fault-parallel ground motions associated with a vertical strike-slip fault. 

7. CONCLUSIONS 
This investigation has led to development of two procedures – response spectrum analysis (RSA) procedure and 
static analysis procedure – for estimating peak responses of linearly-elastic “ordinary” bridges crossing 
fault-rupture zones. Although much simpler than response history analysis, these procedures provide estimates of 
peak seismic responses that are sufficiently “accurate” for most practical application.  

In the presented procedures, the peak value of seismic response of the bridge is computed by superposition of peak 
values of quasi-static and dynamic parts of the response. The peak quasi-static response is computed by static 
analysis of the bridge with peak values of all support displacements applied simultaneously. Two procedures are 
presented for estimating the peak dynamic response. In the RSA procedure it is estimated directly from the 
response spectrum including all significant modes in the dynamic analysis. The static analysis procedure avoids 
computing the vibration periods of the bridge, and estimates the peak dynamic response by a much simpler static 
analysis of the bridge to appropriately selected forces. These procedures utilize the “effective” influence vector 
that differs from that for the spatially uniform excitation. Furthermore, the RSA procedure uses the response 
spectrum for ground motions expected in close proximity to the causative fault. 

The natural vibration modes that are excited in bridges subjected to motions resulting from rupture on a fault 
passing under the bridge differ entirely from those excited in bridges on one side of the fault. Therefore, it is 
important to correctly identify the modes that need to be considered in the RSA procedure. For this purpose, the 
modal contribution factor concept is demonstrated to be useful.  

It is recognized that bridges subjected to motions resulting from rupture of a fault passing under the bridge are 
unlikely to remain within the linear elastic range. Therefore, the research reported in this paper must be viewed as 
the basis for development of a procedure to estimate seismic demands in bridges responding beyond the linearly 
elastic range, a subject addressed elsewhere (Goel and Chopra, 2008). 
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