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ABSTRACT : 

A self adaptive particle filter method for structural system identification is presented in this paper. Such an
adaptive technique that uses statistical methods to adapt the number of particles at each iteration. This method
improves the efficiency of state estimation by adapting the size of sample sets during the estimation process 
through KLD-Sampling. Within this adaptation process the number of samples is increased if the state
uncertainty is high and decreased if the density distribution is focused on a small part of the state space.
Simulation results of system identification for tracking the dynamic parameter changes are presented to 
demonstrate the effectiveness of the proposed method. 
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1. INTRODUCTION  
 
In the field of civil engineering, real-time structural identification of dynamic system subjected to the
earthquake motion has been focused on the accurate prediction as well as structural health monitoring and
damage assessment. A widely adopted approach to addressing this problem is the Kalman filter over the past 
years (Shinozuka et al. 1982), which is optimal in the cases when the data are modeled as a Gaussian state-space 
model. When nonlinearities have to be tackled, Taylor series expansion around the operating point is adopted, 
which leads to the extended Kalman filter (EKF) method (Yang et al. 2005). Taylor series approximation 
leading to the EKF makes gross simplification of the probabilistic specification of the model. It has been shown 
in the literature that in many situations the EKF, due to the implemented approximations, can diverge in the
tracking of the unknowns and in general can provide poor performance lead to estimation divergence. In recent, 
many alternative approaches to overcome the deficiencies of the EKF and the limitations of linear assumption 
and Gaussian characteristics of noise in Kalman filter, have developed including the Gaussian sum filters (Ito 
and Xiong 2000) and the unscented Kalman filter (van der Merwe  et al. 2000; Tang and Sato 2005; Wu et 
al. 2007).  

A recently developed filtering technique, called particle filter (PF) (also called Monte-Carlo filter, bootstrap 
filter, condensation, etc.) was proposed by Gordon et.al. (1993) and Kitagawa (1996). It is a useful tool to 
perform dynamic state estimation via Bayesian inference. It provides great efficiency and extreme flexibility to
approximate any functional nonlinearity. Particle filters have recently been applied with great success to a
variety of state estimation problems, such as radar tracking (Herman 2002), human motion tracking (McKenna 
2007) and parameter identification (Li et al. 2004). This success is mostly due to their simplicity and their
ability to represent arbitrary, nonlinear and non-Gaussian state space models. The increased representational
power, however, comes at the cost of higher computational complexity. Most existing approaches to particle 
filters use a fixed number of samples during the entire state estimation process. This can be highly inefficient,
since the complexity of the probability densities can vary drastically over time. 

In this paper we introduce self adaptive real-time particle filters that greatly increase the performance of
particle filters under limited computational resources. Our approach improves the efficiency of state estimation 
by adapting the size of sample sets during the estimation process through KLD-Sampling. Examples of 
structural parameters identification show that our approach yields drastic improvements over particle filters
with fixed sample set sizes.  
 
 
2. PARTICLE FILTERS FOR BAYESIAN ESTIMATION 
 
In a general discrete-time stochastic system model, the evolution of the state sequence { }N∈k,kx of the 
system is given by  

 )( 11 −−= kkk ,vxfx  (2.1)    

where is a possibly nonlinear function of the state , is an i.i.d. xvx nnn: RRR →×f 1−kx { N1 ∈− k,kv }
process noise sequence, are dimensions of the state and process noise vectors, respectively, and N is the 
set of natural numbers. The objective of system is to recursively estimate form measurement 

vx nn ,

 )( kkk ,nxhz =  (2.2) 

where  is a possibly nonlinear function, znx nnn: RRR →×h { }N∈k,kn  is an i.i.d. measurement noise 
sequence, and are dimensions of the measurement and measurement noise vectors, respectively.  nz ,nn

The main idea in Bayesian estimation is to compute the posterior density kx based on the set of available

measurements  up to time k. The sequential Monte Carlo methods simulate this distribution with a
finite number of samples, or “particles”. The more particles, the better the approximation gets. Because of the

{ }k
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concept of particles, these filters are often referred to as particle filters. 

The particle filter approximates  with a set of N random samples  , where each )( kk |p zx N
i

i
k 1}{ =x

particle  is assigned a weight i
k .The weight of each particle should in some way reflect the probability

that the properties of this particle are the correct ones. Those particles with the highest weights are propagated
in time and natural selection is performed. It should be noted that the number of particles, N, has to be chosen 
large enough to accurately represent the underlying probability density function. At each iteration the operation 
of the particle filter can be seen as an importance sampling process. The sampling and weighting steps of the 

i
kx w

particle filter correspond to the basic steps of an importance sampling process. In this case, the samples are
drawn from an importance function that corresponds to the dynamic prior ( Doucet et al. 2000 ). 
Using this importance function, a generic algorithm of sampling importance resampling (SIR) particle filter
using transition prior density as proposed distribution is given as follows. 

)|(p xx kk 1−

0

For time steps k = 0, 1, 2, … 
1. Initialization: for i=1,…, N, sample )( 0x , set N0 = . x p~i wi /1
2. Importance sampling: for i=1,…, N, draw samples )| 1

i
kk −x . (i p~ xxk

i pw x|z=3. Weight update: calculate the importance wights )( i
kk  for i=1,…,N.  k

4. Normalize the importance weights:
∑

= N j
k

i
ki

k
w

w
w~
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. 

5. Resampling: generate N new particles j
kx (j=1,…, N) from the set N

i
i
k 1}{ =x  according to the importance

weights iw~ . k

6. Repeat steps 2 to 5. 
Recursively calculating the above six steps generates the basic particles in system identification, which may 

estimate the system states and parameters on-the-fly. 
The accuracy and robustness of particle filters are closely related with the dimension of particle state and the

size of particle sets. Unluckily, the computational complexity is proportional to the size of particle sets and
increases exponentially with the dimension of particles state. Consequently, the focused improvement to
particle filters is seeking for more efficient trade-off between accuracy, simplification and robustness of the 
particle filtering algorithms. 
 
 
3. THE SELF ADAPTIVE PARTICLE FILTERS (SAPF)  
 
The selection of the number of particles is a key factor in the efficiency and accuracy of the particle filter. The
computational load and the convergence of the filter depend on this number. Most applications select a fixed
number of particles in advance. Unfortunately, the use of a fixed number of particles is often inefficient. The
dynamics of most processes usually produces great variability in the complexity of the posterior distribution 
such as unexpected measurement loss and physical parameter changes in the dynamic system. As a
consequence, the initial estimation of the number of particles can be much larger than the real number of
particles needed to perform a good estimation of the posterior distribution or, worse, at some point, the selected
number of particles can be too small causing the filter to diverge. 

Obviously, the number of samples has a significant influence on the computational burden of the system. 
While a higher number of samples might be needed to represent the belief during early stages of the tracking
process, a smaller number of samples should be sufficient once the estimate has converged to a compact
distribution about the true values.  

In order to improve the efficiency of the generic particle filter further, we propose KLD-Sampling (Fox 
2001) based in the theory of statistics that can be used to adaptively estimate the number of particles to
represent the target posterior distribution without adding a significant load to the normal operation of the filter.
At each cycle of the particle filter, this technique estimates the number of particles that, with a certain level of
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confidence, limits the maximum error in the approximation. 

The approach used here was first introduced by Fox (2001) and is called KLD-Sampling. One can make use
of Kullback-Leibler (KL) distance to update the necessary particle size in a certain error bound between the
sample-based maximum likelihood estimate and the current approximation of the true posterior. Therefore,
KLD sampling achieves improvement of real time performance while maintaining the estimate accuracy of
particle filter in system identification. 

KLD-Sampling is based on the assumption that the true posterior can be represented by a discrete piecewise 
constant distribution consisting of a set of multidimensional bins. To derive this bound, we assume that the true
distribution is given by a discrete, multinomial distribution – depicted by a number of bins k. Since the error 
between the filter-estimate and the true distribution is measured by the Kullback-Leibler distance. The 
KL-distance describes the distance of two probability densities (p and q) as a kind of matching ratio of the 
distributions: 

                          
( )( , ) ( ) log
( )x

p xK p q p x
q x

=∑                           (3.1) 

Suppose that n samples are drawn from a discrete distribution with k different bins. Let the vector X = 
(X1, . . . ,Xk) denote the number of samples drawn from each bin. X is distributed according to a multinomial 
distribution, i.e. X ~Multinomialk(n, p ), where p  = p1, …, pk specifies the true probability of each bin. 

The maximum likelihood (ML)estimate of p  using the n samples is given by 1p̂ n X−= . Furthermore, the 
likelihood ratio statistic nλ  for testing p  is 

                             ∑=
k

j
jn p

p
X )

ˆ
log(logλ

=j j1

j

                          (3.2) 

Since X  is identical to , we get ˆnpi

                             ∑=
k

j
jn p

p
pn )

ˆ
log(ˆlogλ

=j j1

                         (3.3) 

From Eqn.3.1 and Eqn.3.3, we can see that the likelihood ratio statistic is n times the KL-distance between 
the MLE and the true distribution: 

                                   ˆlog ( , )n nK p pλ =                              (3.4) 

It can be shown that the likelihood ratio converges to a chi-square distribution with k-1 degrees of freedom: 

                           2
1log2 −→ kdn χλ )( ∞→n                          (3.5) 

Now let ˆ( ( , ) )pP K p p ε= ≤  denote the probability that the KL-distance between the true distribution and 
the sample-based MLE is less than or equal to ε  (under the assumption that p  is the true distribution). The 
relationship between this probability and the number of samples can be derived as follows: 

                      )2),ˆ(2()),ˆ(( εε nppnKPppKP pp ≤=≤                   (3.6) 

                                                            (3.7) )2( 2
1 εχ nP kp ≤≅ −

Eqn.3.7 follows from Eqn.3.4 and the convergence result stated in Eqn.3.5. The quantiles of the chi-square 
distribution are given by 

                                                     (3.8) δχχ δ −=≤ −−− 1)( 2
1,1

2
1 kkpP

If we choose n such that 2nε  is equal to , we can combine Eqn.3.7 and Eqn.3.8 and get 2
1,1 δχ −−k

                            δε −=≤ 1)),ˆ(( ppKPp                          (3.9) 
Now we have a clear relationship between the number of samples and the resulting approximation quality. To 

summarize, if we choose the number of samples n as 
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                                 2
1,12

1
δχ

ε −−= kn                              (3.10) 

then we can guarantee that with probability 1-δ, the KL-distance between the MLE and the true distribution is 
less than ε . In order to determine n according to Eqn.3.10, we need to compute the quantiles of the chi-square 
distribution. A good approximation is given by the Wilson-Hilferty transformation (Johnson et al. 1994), which 
yields 
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where  is the upper 1-δ quantile of the standard normal distribution. The values of  for typical 
values of δ are readily available in standard statistical tables. 

δ−1z δ−1z

In the KLD-Sampling process the bins k are estimated by the number of grid cells that are at least occupied
by one particle. To approximate the multinomial distribution, a fixed, three-dimensional grid is used. During 
the prediction step of the particle filter the algorithm checks if the newly generated particle falls into an empty
cell of the grid or not. If the grid cell is empty, the number of bins k is incremented and the cell is marked as 
not-empty. The determination of k can be done incrementally by checking for each generated sample whether it
falls into an empty bin or not. After each sample, the Eqn.3.11 is used to update the number n of samples 
required for current estimate of k. This process is repeated till no more empty grid cells are filled and k stops 
increasing. Consequently n stabilizes. The grid is reset after every filter update.  
 
 
4. NUMERICAL EXAMPLES 
 
In order to validate the self adaptive particle filter identification method, numerical simulations of a 3-DOF 
system as shown in Fig.2 are carried out. The equation of motion is given by 

                                  g&&&&& mkuucum −=++                            (4.1) 

where , c  and k are the mass, damping and stiffness matrices respectively, u the relative displacement 
vector to the ground and the ground motion acceleration. 

m
g&&

 
 
 
 
 
 
 
 
 
 

 
 

Regarding the unknown parameters as state variables of the state vector , such as stiffness and damping, 
one can define an augmenting state transition as 

x

                               kkk vxx += −1                                (4.2) 
where is the process noise. kv

When structural responses to the acceleration (or velocity, displacement) is available for the identified
system, then the observation equation is 

                                        (4.3) kkkkkkkkk nukmucmnxHz +−−=+= −− 11 &

m1 k1 c1 

m2 k2 c2 

m3 k3 c3 

g&&

Figure 1 A 3-DOF structure system 
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in which is the observation,  is the observation matrix, and is the observation noise. kz kH kn
The El Centro (NS, 1940) earthquake record with modified maximum amplitude of 25 cm/sec2 was input 

excitation. The seismic responses of the system were simulated as observation data for identification. The
sampling interval of the structural responses to be used for identification is 0.02s. The following parametric
values are used in the simulation study: mi = 12.553 kg, ci=0.07 kN s/m, ki =24.5 kN/m (i=1, 2, 3). For verifying 
the online non-stationary tracking ability of the proposed method, it is assumed that damage occurs at the 
second node, where the stiffness decreases from 24.5 to 19.6, and damping increases from 0.07 to 0.105 at 
t=15s. In this example, the parameter ε is 0.005, and 1-δ is 95%. The initial particle number is set as 10000. 

Figures 2-4 show the results of tracking the stiffness and damping using the self adaptive particle filter. It can 
be seen from these figures that the SAPF successfully track the abrupt changes of the stiffness and damping.  
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Figure 2 The estimated results of the 1st story 
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Figure 3 The estimated results of the 2nd story 
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Figure 4 The estimated results of the 3rd story 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 Typical evolution of number of samples for a tracking parameter sudden changes run 
 

Figure 5 shows the sample set size during typical tracking sudden changes of the system parameters run 
using KLD-Sampling. From the figure 5, it shows that the particles number will adaptive turning with system
parameter abrupt changes in real time through the KLD-Sampling. These figures indicate that the SAPF, even 
though based on several approximations, is able to accurately track the parameters’ sudden changes using far 
smaller sample sets on average. Therefore, the SAPF method is suitable to solve the real time damage detection 
problems.  
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CONCLUSIONS  
 
A statistical method called self adaptive particle filtering method based KLD-Sampling to adapt the sample set 
sizes of particle filters during the structural system identification process is presented. The SAPF method is to 
bound the error introduced by the sample-based belief representation. At each iteration, the SAPF generates 
samples until their number is large enough to guarantee that the KL-distance between the maximum likelihood 
estimate and the underlying posterior does not exceed a pre-specified bound. SAPF method is most 
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advantageous when the complexity of the system parameters change drastically over time, as is the case, for 
example, in real time damage detection.  
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