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ABSTRACT : 

The direct boundary element method is well studied for the analysis of the seismic response of triangular
valleys. The main purpose of this article is conducting the numerical parametric analyses in the time domain to
gaining insight into amplification pattern of 2D triangular valleys. Clear perspectives of the amplification 
patterns of the valley are presented by investigation of the frequency-domain responses. It is shown that 
wavelength and site geometry are the independent key parameters governing the valley's amplification pattern. 
Some simple relationships are obtained based on study results which could be used in seismic microzonation
and seismic design of structures founded inside the valley. 
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1. INTRODUCTION 
 
Based on prior observations (Friuli, Italy 1976, Irpinia, Italy 1980, Chile 1985,…) it has well been recognized
that by changing the amplitude, frequency content and duration of ground shaking, the local geological and 
topographical conditions can yield concentrated damages during earthquakes. Complex nature of the seismic
wave scattering by topographical structures can be studied accurately and economically by advanced numerical
methods under realistic conditions. The BEM is a very effective numerical tool for dynamic analysis of linear
elastic bounded and unbounded media. The method is very attractive for wave propagation problems, because
the discretization is done only on the boundary, yielding smaller meshes and systems of equations. Another
advantage is that this method represents efficiently the outgoing waves through infinite domains, which is very
useful when dealing with scattered waves by topographical structures. When this method is applied to problems 
with semi-infinite domains, there is no need to model the far field. Prompted by observational and instrumented
evidence, the problem of scattering and diffraction of seismic waves by topographical irregularities has been
studied by several authors using numerous numerical methods, but attempts have seldom been made to express
the parametric analysis results in terms of microzonation study requirements. (Boore 1972) modeled the effects 
of a ridge by using finite differences. Significant interest in ground motion variations across canyon geometries
was generated by recordings of unusually large amplitude on a canyon rim near Pacoima Dam during the 1971
San Fernando earthquake. This led to studies of the effects of canyon topography on ground motion by 
(Trifunac, 1973),(Wong and Trifunac, 1974) among others. These investigators generally assumed linear-elastic 
medium and simple canyon geometry under SH waves (e.g., semi-cylinder or semi-ellipse). Similar studies for P
and SV waves have been performed by (Wong ,1982) and (Cao and Lee,1990), and indicate amplification levels
generally smaller than those for SH. Canyon geometry is also significant, with amplification being negligible for
shallow canyons (ratio of depth to width < 0.05). For deep canyons, edge amplification is not significantly 
different than that discussed above, but more base de-amplification occurs (Wong and Trifunac, 1974). 
(Sánchez-Sesma & Rosenblueth, 1979) presented a method for calculating the two-dimensional scattering of
incident SH waves by canyons of arbitrary shape. They formulated the problem in terms of a Fredholm integral
equation of the first kind with the integration path outside the boundary.(Shah et al.1982) studied scattering of 
antiplane shear waves (SH) in two dimensions by surface and near-surface defects in a homogeneous, isotropic 
elastic semi-infinite medium .They finally studied a problem of multiple scattering by a triangular canyon and a 
nearby circular tunnel.(Kawase et al 1988) calculated time-domain response of a semicircular canyon for 
incident  SV , P and Rayleigh waves by the discrete wavenumber boundary element method. 
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(Vogt et al 1988) calculated the generalized scattered motion in the region of a canyon of arbitrary shape in a
horizontally layered half-space using the indirect-boundary-element method in the frequency 
domain.(Vaziri&Trifunac1988b) verified the scattering and diffraction of plane P and SV waves in two –
dimensional valleys.(Eshragi & dravinski 1989) by using a wave function expansion technique investigated 
scattering of elastic waves by three-dimensional canyons embedded within an elastic half-space. 
(Sánchez-Sesma et al.1993) applied a boundary integral formulation to model the ground motion on alluvial valleys
under incident P, S and Rayleigh waves.(Sánchez-Sesma&Luzon,1995) used a simplified indirect boundary-element 
method (BEM) to compute the seismic response of three-dimensional alluvial valleys under incident P, S, and 
Rayleigh waves.(Moczo et al. 1996) investigate an antiplane 2D resonance in a certain class of the sedimentary 
structures using the finite-difference modeling and they showed the 2D resonance which may develop in the valleys
do not satisfy Bard and Bouchon's existence condition.  Their results confirmed that the resonance phenomenon is 
quite robust and that it is to be expected in many configurations of sediment valleys or basins. 
(alvarez-Rubioa et al.2005) used the boundary element method for the analysis of the seismic response of valleys
of complicated topography and stratigraphy. (Kamalian et al 2006) have presented advanced formulation of the
time-domain two-dimensional hybrid finite element–boundary element method (FEM/BEM) and have applied to
carry out site response analysis of homogeneous and non-homogeneous topographic structures subjected to 
incident in-plane motions. (Kamalian et al 2007, 2008) have used direct boundary element method to study the
Amplification Pattern of 2D Semi-Sine Shaped Valleys and hills Subjected to Vertically Propagating Incident
Waves. In this article, to able to gaining insight into seismic response of triangular valleys a series of numerical 
parametric analyses have been conducted by using time domain direct boundary element method. To this end we
exploited a general purpose two-dimensional nonlinear two-phase BEM/FEM code named as HYBRID. Several 
examples including site response analysis of half-plane, horizontally layered sites, canyons, alluvial valleys and
ridge sections subjected to incident P and SV waves were solved in order to show the accuracy and efficiency of 
this implemented BE algorithm in carrying out site response analysis of topographic structures. 
 
 
2. METHODOLOGY OF PARAMETRIC ANALYSIS 
 
In all analyses the vertically propagating incident P, SV waves of Ricker type are adopted as a dynamic
excitation. The Ricker type wave equation can be expressed as: 

[ ] 2
0p ))tt(f(2

0p e))tt(f(21)t(f −⋅⋅−−⋅⋅⋅−= ππ  (1) 
in which, fp and t0 denote the predominant frequency and an appropriate time shift parameter, respectively. In
case of SV waves, f (t) designates the horizontal component of the incident motion while the vertical one is zero,
and in case of P waves, vice versa. The boundary conditions consisted of the traction free ground surface and the
seismic loading was introduced through the term of incident motion. The geometry of the 2D homogenous 
valley and Ricker wave time history are demonstrated in Fig. (1), (2) respectively. 
In order to apply the results of analyses to frequencies and geometrical conditions different from those of this 
study models, all results were presented in dimensionless forms. To achieve this goal the well known
dimensionless period T= tc2 /2b (or its inverse: the dimensionless frequency), which means physically the ratio
of the incident's wave length to the width of the valley and the shape ratio of valley SR=h/b, are used in which
C2 is wave propagation velocity, b is the half width of the valley, t is time and h is the depth. This study involves
a wide range of shape ratios to considering the geometry of the valley: 0.1,0.3,0.5,0.7,1.0,1.2,1.5,2,3,4. Poisson 
ratio is chosen 0.33 and seismic wave frequency is adopted 3 Hz. Based on engineering interests, a 
dimensionless period interval of 0.25 to 8.33 was considered, which corresponds to incident waves with wave
lengths of 0.25 to 8.33 times the valley's width. This broad period interval was divided into the five subintervals
namely: (0.25 - 0.5), (0.50 - 1.00), (1.00 - 2.00), (2.00 - 4.17) and (4.17 - 8.33), corresponding to incident waves 
with very short, short, medium, large and very large wave lengths, respectively. Five above-mentioned intervals 
are shown by P1, P2, P3, P4 and P5 respectively. For the sake of simplicity and following the well known
concept of average horizontal spectral amplification (AHSA) defined by (Borcherdt et al 1994) as spectral ratios 
representing averages over short, intermediate, mid and long period bands, five distinct amplification factors
were computed for every point along the valley, by averaging the corresponding amplification curve over each
of the above mentioned five period subintervals P1 to P5.  
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Figure 1 The geometry of 2D slope Figure 2 Ricker type wave time history 

 
3. GENERAL AMPLIFICATION PATTERN 
 
Figure 3 demonstrate clear perspectives of the time domain amplification pattern of a 2D valley with the shape
ratio of 1.0 subjected to an incident P and SV wave. The receiving points are arranged within an interval of -5b 
to 5b from the valley's center. As can be inferred in the motion components consistent with excitation namely
horizontal Component for SV incident wave and vertical component in P incident wave, the ground motion has
an amplification of 2.0 but in the motion components opposite to excitation no considerable amplification is
produced. The displacement time history of the neighboring points of the edge of the valley are composed of
incoming, reflected, refracted and Rayleigh wave effects. As expected the interference of four aforementioned
waves produces the largest value of the motion amplitude in the edge and in its neighboring points. Refer to 
Figure 3 As the incoming waves arrive to the lower points of the valley, the diffracted waves travel through the
inclined free surface until they reach to the edge and then move to the points far from the edge. Considering the
displacement time histories of the points far from the edge, enable us to observe different diffracted waves.
Since diffracted SV and Rayleigh waves propagate with lower velocity compare to diffracted P waves so they
arrive in time lag to the points far from the edge. These two kinds of diffracted waves can easily be
distinguished in Figure 3. 
 
 
3. WAVE LENGTH, SHAPE ARTIO AND WAVE TYPE EFFECT 
 
Figures 4 demonstrate in a more detailed form, the dependency of the amplification potential of 2D triangular
valleys subjected to vertically incident P, SV waves on the wave length and shape ratio. The amplification
curves for the points within the valley are categorized according to the wave length of the incident wave, for six
shape ratios of 0.1, 0.5, 1, 3 and 4. The amplification curves are only shown for consistence components of
motion. As can be seen, irrespective of the shape ratio, the wave length plays a key rule in determining the
amplification curve of the valley. For both P,SV incident waves two distinct zones along the valley could be
distinguished: The first zone is the central part of the valley in which the ground motion is usually de-amplified, 
irrespective of the length of the incident wave and of the valley's shape ratio. The second zone consists of the 
edge and its adjacent region in which the ground motion could be considerably amplified, depending on the
length of the incident wave and on the valley's shape ratio. If the valley is impinged by a very long to long
incident wave, the edge zone would experience amplification factors of one and greater than one, which increase
along with the shape ratio. In this case, the maximum amplification factor occurs at the edges and the
amplification curve decays toward the center of the valley. If the incident wave possesses a length of medium size, 
although the same behavior would exist, but as the shape ratio increases, smaller parts of the edge zone would be
amplified and more oscillation of the amplification curves could be seen. If the valley is impinged by a short to very 
short incident wave, the same behavior would still be seen, whereas the oscillations of the amplification the curves
would be intensified and valleys with smaller shape ratios would be mostly amplified. Figure 4 shows that the 
amplification patterns SV and P waves are similar in general. In spite of these similarities, there exist some minor
differences. When the valley is subjected to short period excitation (P1, P2) although SV incident waves produce
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Figure 3. Amplification patterns of a triangular valley with shape ratio of 1 in case of incident SV (right) and P 
(left) waves (The symbols ‘Hrz’ and ‘Vrt’ present the horizontal and vertical components of amplification, 
respectively.) 
 
the largest amplifications in large shape ratios but no considerable amplification is observed for smaller shape 
ratios. Conversely, considerable amplifications can be concluded in the lower shape ratios in the case of P wave
excitation. In medium period subinterval (P3) the valleys with smaller shape ratios become more vulnerable to SV
wave excitation. In long to very long excitation (P4, P5) only under SV waves the amplification potential of the
valleys is more pronounced. Figure 5 depicts the amplification curves for constant shape ratios which are drawn for 
different periodic subintervals. It can be seen that as the shape ratio increases besides the short period components the
effect of long period components of incident waves becomes critical and the relief can significantly amplify the 
low frequency seismic motions.  
 The variation of de-amplification and amplification factor in the center and edge of the valley with
dimensionless period is demonstrated in Figure 6 for SV wave excitation and some different shape ratios. The 
natural period of the valley can be obtained from Figure 6 for each shape ratio. It can be inferred that as the 
shape ratio increase the natural period increases (or characteristic frequency decreases). In other word as the
shape ratio increase the larger wavelengths can be amplified by the valley. 
 
 
4.LIMITING PERIOD 
 
As mentioned in previous section the amplification of the valley is mainly governed by shape ratio and wave
length. In spite of this fact, there are some useful engineering indexes, noticeable in seismic microzonation 
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works, which could be evaluated as a function of only the shape ratio. Aiming at this goal the limiting
dimensionless period Tlimit of incident waves that cause an amplification factor of 1.1 at the edges is used. The 
incident waves which their period is greater than the Tlimit produce amplification at the edges less than10 percent 
and the topography effect could be practically ignored in this case. In the following some of the seismic
characteristics of semi sine valleys like Tlimit and peak amplification, which is studied by (kamalina et al 2007) 
will be compared with this article results. The approximate linear variation of the limiting dimensionless period
with shape ratio for both kinds of valleys is demonstrated in Figure 7. 
As Figure 7 indicates, since compare to the triangular valleys the semi sine valleys have greater area so in all
shape ratios the semi sine valleys have a larger limiting periods, in other word the minimum frequency that is 
required to create a considerable amplification in semi sine valleys is smaller than that of triangular valleys. The 
Tlimit for semi sine and triangular valley can be approximated  as equations 2 and 3 respectively: 
 

Tlimit =0.3+3 .4 (S.R) (2)
Tlimit = 0.1+1.7 (S.R) (3)

 
        
5.PEAK  AMPLIFICATION 
 
In order to investigate the effect of the shape of the valley on the amplification factor, the relation between the
peak amplification and shape ratio is approximated by linear relationship and is compared for two triangular and 
semi sine valleys in Figure 8-a As it can be seen there is no considerable difference between two amplifications
and two kinds of valleys produce roughly the same peak amplifications when they have an equal shape ratios.  
The maximum amplification factors of the edge estimated by equations (4) and (5) are comparable to the
maximum value of 1.4 proposed by the AFPS code for seismic design of structures in topographic areas. As
Figure 5 indicates there is notable spatial variation of the motion amplitude along the valley, especially in the 
case of valleys with shape ratios of more than 1.0, which can yield considerable relative displacements
important for line structures such as bridges, dams and life-lines. To consider this effect, Figure 8-b
approximates the maximum relative amplification of the edge with respect to center of the valley, as a linear
function of the shape ratio for two triangular and semi sine shapes. The linear equations correspond to each case
are also described. Linear peak amplification relationships for semi sine and Triangular valleys can be expressed
as equations (4),(5): 
 

Amax =1+0.3SR (4)
Amax =1+0.25SR (5)

   
As can be seen, in the case of semi sine and triangular valleys with a shape ratio of 1.5, the amplitude of motion
at the edge of the valley could be around 8 and 12 times of that at its center respectively, which could not be
ignored in seismic design of line structures. 
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Figure 4. Wavelength effect and shape ratio effect on averaged amplification curves of 2D  triangular shaped 

Valleys subjected to vertically propagating incident SV (left),P (right)  waves.(x/b is normalized distance from 
center of the valley )  
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Figure 5 The amplification curves of 2D semi-sine-shaped valleys subjected to vertically propagating incident SV 
waves for different periodic subintervals for different shape ratios 
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Figure 6. The variation of de-amplification and amplification factor in the center and edge of the valley whit 

dimensionless period 
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Figure 7 Comparison of limiting dimensionless period in semi sine and triangular valleys 
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Figure 8 Variation of relative and Max. amplification with shape ratio 

 
 

6.CONCLUSIONS 

This paper presents clear perspectives of the amplification patterns of 2D homogenous triangular valleys 
subjected to vertically propagating SV and P waves, obtained by an extensive numerical parametric analysis
using the time domain BEM. It is shown that: 

1. The amplification potential of the valley is strongly influenced by the wave length of the incident wave 
and by the shape ratio. 

2. The topography effect could be ignored, only if the valley has a shape ratio of less than 0.1 or is
subjected to incident waves with wave lengths of greater than Tlimit times its width. The coefficient Tlimit
could be estimated by equation (3) and is usually less than four times the shape ratio.  

3. Although the amplification potential of the valley increases with the shape ratio, but the increasing rate
depends on the wave length and varies across the valley. 

4. Two distinct seismic zones could be distinguished along the valley: The center zone in which the motion
is mostly de-amplified; the edge zone in which the ground motion could be considerably amplified,
especially if impinged by incident waves possessing wave lengths of equal or twice the width of the 
valley. 

5. The maximum amplification factor along the valley occurs usually at the edge and has an increasing rate
of 0.25 times the increasing rate of the shape ratio. 
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