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ABSTRACT : 

In this paper, we introduce acoustoelasticity theory to investigate wave-velocity distribution and polarization 
around a borehole in prestressed rocks to build their direct and explicit link macroscopically. The 
acoustoelasticity theory based on non-linear continuum mechanics invokes third-order elastic constants to 
explain the stress-induced wave-velocity change of rocks. The numerical results show that directions of the 
maximum and minimum wave-velocity change around a borehole correspond to those of the minimum and 
maximum far-field principal rock stresses, respectively. In order to validate the theoretical analysis, wave 
velocities around a borehole in sand stone under the biaxial loading are measured by pulse-echo method. The 
detail discussion shows that the experimental results coincide with the theoretical results, which means that the 
ultrasonic method based on acoustoelasticity theory could be a promising measurement method for in-situ rock 
stresses. 
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1.INTRODUCTION 
 
Many experimental observations have shown that the existence of initial stress in metal materials yields elastic 
anisotropy and then shear-wave splitting, which is known as acoustoelasticity birefringence. [1] Acoustoelasticity 
theory had been developed to explain these phenomena, which has been widely used in the measurements of 
residual stress, plastic damage, and plastic strain ratio of metal materials. [2] In rock engineering, the stress-
induced shear-wave splitting also appears in rocks, at the same time, the sensitivity of wave velocity to rock 
stresses is much more than metal materials.[3] Johnson and Rasolofosan [4] verified that stress-induced anisotropy 
of P wave for rocks is much more than acoustoelasticity birefringence. Huang et al. [5] demonstrated that the 
acoustoelasticity theory for the metal materials could interpret the experimental results of rocks effectively. Vega
[6] discussed the difference between wave-velocity anisotropy induced by intrinsic anisotropy and the initial 
stresses. Winkler et al. [7] studied the influence of stress concentration in sonic logging on acoustic-wave velocity, 
which shows that the initial rock stresses lead to crossover of dispersive curve but intrinsic anisotropy of rock 
not. Sinha et al. [8] investigated the effect of three-axial stresses on the dispersion of Stoneley wave and flexural 
wave, and indicated that the polarization direction of fast shear wave coincides with that of maximum far-field 
principal stresses and the shear-wave anisotropy is proportional to the stress magnitude. All above mentioned 
show that the rock stresses have great influence on wave velocity.  
Since the in-situ stress measurement in the tunnel of Hoover dam in 1932，hydraulic fracture method, stress 
relief method, and acoustic emission method have been developed to measure in-situ rock stresses.[9,10] As a 
direct method, hydraulic fracture method must be satisfied that the directions of one principal stresses coincide 
with that of borehole axis and no micro-crack exists in the rock. Acoustic emission method being based on 
Kaiser effect of rocks, is related with not only modern stresses but also historical stresses. Stress-relief method 
uses the strain-meter to measure surface strains of the borehole and then the stresses. The sensor element does 
not measure the surface strain directly, which needs the calibration before each measurement. The present 
measurement methods for in-situ rock stresses have evident error and high expense. However, the high-resolution 
and convenient measurement of wave velocity promises quantitative evaluation of in-situ rock stresses from the 
measurement of the wave-velocity changes for rocks conveniently. 
In this paper, we investigate the quantitative acoustoelastic relation around a rock borehole based on the 
acoustoelasticity theory of the continuum. First, we introduce acoustoelasticity theory of rocks briefly,  and then
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combine the strain and stress fields around a borehole to investigate the quantitative acoustoelasticity around a 
borehole of rock mass. Second, in order to verify the theoretical results, pulse-echo method is adopted to measure 
the velocity changes of longitudinal wave and shear waves around a borehole subjected to far-field bi-axial 
stresses. The numerical and experimental results show that the acoustoelasticity theory of the continuum is 
applicable for measuring the in-situ rock stresses. 

 
2.ACOUSTOELASTICITY THEORY OF ROCK 
 
Based on the non-linear continuum mechanics, the acoustoelasticity theory of rock is introduced to establish a 
theoretical basis for stress-induced wave-velocity change of rocks, which considers the large deformation and the 
nonlinear stress-strain relation of rock. There exist natural state, initial state, and final state in acoustoelasticity 
theory of rock. The natural state is the state where a rock is in the original state free of stress and strain, and the 
initial state if a rock has been deformed or under the action of applied loading. When a dynamic disturbance is 
superimposed on the rock in the initial state, the rock is further deformed to the final state. Physical variables in 
the natural, initial, or final states are denoted by a superscript label 0, i, or f, respectively. The position of a 
particle in the rock at natural, initial, and final states are measured by ξ , X, and x, respectively. The components 
of ξ  and other physical quantities which refer to the natural configuration are denoted by Greek subscripts.   
Assumptions of the initial static deformation, small dynamic disturbance, and hyperelastic constitutive equation 
yield the equation of motion for displacements u(ξ, )t caused by the dynamic disturbance with reference to the 
natural coordinate [1] 

 

0
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where iTαβ  and ieαβ  are the initial static stresses and strains, respectively. 0ρ is the mass density of the rock. 
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. cαβγδ  and cαβγδζη  are the second-order elastic constants 

and the third-order elastic constants, respectively. For isotropic elastic solid, there exist two independent second-
order elastic constants (Lame constants λ  and μ ) and three independent third-order elastic constants 
(Murnaghan constants l , m , and n ) [11].   
 
3. QUANTITATIVE ACOUSTOELASTICITY RELATION AROUND A BOREHOLE  
 

Considering a borehole of radius a  in an infinite, homogeneous, isotropic rock subjected to far-field 
principal stresses 11σ , 22σ , and 33σ  shown in Fig.1, we define a Cartesian coordinate system ( , , )x y z and a 
cylindrical coordinate system ( , , )r zθ  with coincident origin and z axis, which coincides with the borehole axis. 
Here we assume that the elastic waves propagate along the borehole axis. 

 
 

Fig.1 Mechanical model of a borehole in an infinite, 
homogeneous, isotropic rock under the far-field principal stresses.
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Eq. (1) shows that if the quantitative acoustoelastic relation around a borehole can be deduced, the displacements 
and stresses around a borehole induced by far-field stresses must be provided.   

 
a) Displacements and stresses around a borehole subjected to far-field stresses 
According to the linear elasticity, the displacements around a borehole in an infinite rock subjected to far-field 
principal stresses 11σ , 22σ , and 33σ  are expressed as [9]  
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where E and ν  are Young’s modulus and Poisson ratio of rocks, respectively.  The stresses around a borehole 
are denoted by 
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The above equations show that stress concentration around a borehole decreases with the increase of the distance 
far from the borehole surface. When the distance far from the borehole surface is one and a half time greater than 
the borehole radius, the influence of borehole on the far-filed stress fields can be ignored. 
 
b) The plane waves propagating along the borehole axis  
A plane harmonic wave propagating along the borehole axis is considered, whose displacements are represented 
in cylindrical coordinate as 
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where 
0ru , 

0uθ , and 
0zu  are unknown amplitudes, ω  the angular frequency, k  wave number, 0α is the 

angle made by polarization of shear waves to the 1x  axis. Substitution of Eqs. (2)-(10) into expressions of Eq. 
(1) in cylindrical coordinate, and then letting 0θ α=  give rise to a system of equations for the unknown 
amplitude 
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where D V μ ρ=  is normalized wave velocity related with shear waves. The coefficients in the 
characteristic equation are given in Appendix. Polarization of shear waves can be given by the eigenvectors. Eq. 
(11) shows that the wave velocity is determined by the mass density，the second and third order elastic constants 
of rock, the far-field stresses, the normalized distance /r r a= from the borehole surface, and the normalized 
wave number ak ka= .  
 
4. RESULTS AND DISCUSSIONS 
 
Here we take Barre granite as an example to discuss stress-induced wave-velocity change around the borehole in 
the natural coordinate. The elastic parameters of Barre granite is shown in Table I, where the velocities of 
longitudinal and shear waves for Barre granite free of stress are 3790m/s and 2621m/s. 

 
Table I The elastic parameters of Barre granite [4] 

Rock ( )3kg mρ
 

( )GPaλ ( )GPaμ ( )l GPa  ( )m GPa  ( )n GPa

Barrre granite 2650  1.67  18.2  3371−  6742−  6600−  
Fig.2 shows the relation between the wave-velocity change and the normalized wave number ak at 

11 5σ = − MPa， 22 10σ = − MPa， 33 5σ =− MPa, 0oθ = , and r =1. r =1 indicates the borehole surface. 
The polarizations of P wave, S1 wave, and S2 wave are along the axial, radial, and tangential direction of the 
borehole, respectively.  It indicates that the P wave and the S1 wave are dispersive. We attribute it to the 
constraint of borehole surface. With the increase of ak , the velocities of P wave and S1 wave approach to the 
constants, which are denoted by the dashed lines in Fig.2, respectively. When 2ak > , the velocities of P wave 
and S1 wave could be considered to be constant. In the practical ultrasonic measurement, the frequency of 
ultrasonic wave is 1MHz, and the hole radius is 2 cm, which corresponds to 20ak >  for common rocks. No 
constraint in the tangential direction of borehole surface makes S2 wave non-dispersive, which means that wave 
frequency has no influence on S2 wave velocity.  
 

 
Fig.3 shows the wave velocity distribution around the borehole surface versus the far-field stress 11σ when 

11 22σ σ= , 33 0σ = MPa, 1r = , and 10ak = . Fig.3 (a), (b), and (c) correspond to P wave, S1 wave, and S2

wave, respectively.  Wave velocities increases as the far-field stress 11σ  increases. The equality of 11σ and 

22σ  yields no influence of borehole azimuth on the wave velocities. It is also shown that the derivative of S2-
wave velocity to the far-field stress is greater than that of S1 wave, which is attributed to that non-zero 
compressive tangential stress and zero radial stress at the borehole surface give rise to the large tangential 
stiffness relative to radial stiffness. 

Fig.2 the wave-velocity change and the normalized wave 
number ak  at 11 33 5σ σ= = − MPa， 22 112σ σ= , 

0oθ = , and 1r = . 
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(a) P wave                              （b）S1 wave 

 
（c）S2 wave 

Fig.4 shows the wave velocity distribution around the borehole surface when 11 22 / 2σ σ= , 33 0σ = MPa, 

1r = , and 10ak = . It is shown that inequality of two horizontal principal stresses yields the velocity-change

versus the borehole azimuth θ  as 2cos( )a bθ + ，where a and b are determined by the elastic parameters of 
rocks and the far-field principal stresses. The azimuth angles corresponding to the local minimum and maximum 
of velocity change are consistent with the maximal and minimal far-field principal stresses. The measured in-situ 
stress data show that the maximal horizontal principal stress is approximately two times of the minimal 
horizontal principal stress. Hence, it is very important to simply determine the direction of the horizontal 
principal stresses from the minimum and maximum of the measured velocity distribution around the borehole. 

 
（a）P wave                           （b）S1 wave 

Fig.3 The relation between the velocity-change 
distribution around the borehole surface and the 
far-field stress 11σ  when 11 22σ σ= , 

33 0σ = MPa, 1r = , and 10ak = .(a) P 
wave, (b) S1 wave (c) S2 wave. 
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（c）S2 wave 

5. EXPERIMENTS 
 
In order to verify the above-mentioned theoretical analysis, the pulse-echo method was used to measure the 
stress-induced ultrasound-wave velocity change in sandstone. The Figure 5 shows the measurement setup 
schematically. A hole of radius 2 cm was drilled at the center of sand-rock plate of 20 20 3cm cm cm× × along z 
direction. The in-plane biaxial loading is exerted on the rock sample. The longitudinal-wave and normal-
incidence shear-wave piezoelectric transducers of 1 MHz were attached on one surface of rock sample, which 
were arranged near the hole at a certain angle interval. The polarizations of shear wave transducers are along the 
radial and tangential direction of the hole, respectively.  High-power RF pulse transmits by ultrasonic 
transducer into the rock sample, propagates through the rock sample, reflects from the opposite surface and is 
received by the same transducer. Measurements of the time delay between reflected echoes, which did not 
include the influence of the couplant, yields high-resolution wave velocity. 
Fig.6 shows the measured velocity-change distribution around the borehole of sandstone at σ1=15.7MPa and 
 σ2=7.85MPa. Figs. 6(a), (b), and (c) correspond to P wave, S1 wave, and S2 wave, respectively. The 
measurements for P wave and S2 wave appear consistent with the theoretical results, except S1 wave. The 
measurement for S1 wave is a little smaller than the theoretical analysis, but they have the similar trend of wave 
velocity change to the azimuth angle. We attribute it to the constraint and scattering of the borehole surface to the 
radial vibration.                 

 

 
(a) P wave                            (b) S1 wave 

Fig.4 The velocity-change distribution around the 
borehole surface when 11 22 / 2σ σ= , 

33 0σ = MPa, 1r = , and 10ak = . (a) P 
wave, (b) S1 wave, (c) S2 wave. 

Fig.5 The measurement 
setup of pulse echo 
technique 
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(c) S2 wave 

 
6. CONCLUSIONS 
 
In this paper, we introduce acoustoelasticity theory to investigate quantitative acoustoelastic relation around a 
borehole in the prestressed rocks.  Numerical analysis shows that the azimuth angles corresponding to the local 
minimum and maximum of velocity change are consistent with the maximal and minimal far-field principal 
stresses, which s very important to simply determine the direction of the horizontal principal stresses from the 
minimum and maximum of the measured velocity distribution around the borehole. The pulse-echo 
measurements for sandstone is consistent with the results of theoretical analysis, which promises that the 
ultrasonic method based on acoustoelasticity theory could be a promising measurement method of in-situ rock
stresses. 
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APPENDIX:  Coefficients in Eq.(11) 
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Fig.6  The measured velocity-change distribution 
around the borehole of sandstone at 1 15.70MPaσ =
and 2 7.85MPaσ =  
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