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ABSTRACT : 

Cyclic response of geomaterials is complex due to the pressure and specific volume dependency of the stress-stain 
relationship and the highly nonlinear behavior of the soil. This is particularly the case under undrained conditions in 
granular soils, where repeated loading and unloading can lead to a substantial rise in the pore water pressure and a 
sudden loss in the shear strength and the stiffness of the soil. Concerted efforts have been made to develop some 
plasticity models to predict non-linear behavior of soils. Conventional plasticity models such as Cam clay always 
assume a fixed shape of yield surface with a purely elastic interior domain, associative flow rule and using isotropic 
hardening rule for the evolution of the yield surface. These attributes lead to conceptually simple, non-rigorous and 
computationally efficient models. Cam clay model has some weakness, such as overestimating peak strength of 
over-consolidated clays and dense sands and unable to predict the static liquefaction failure observed in undrained 
loading of loose sands. Assumption of a purely elastic domain inside the yield surface limits the ability of these 
models to predict plastic deformations during unloading and subsequent reloading stages of a cyclic loading, which 
can lead to dynamic liquefaction in loose sand. This research is aimed to use bounding surface plasticity model to 
predict non-linear behavior of saturated soil subjected to dynamic loading. This method is computationally simple, 
uses fewer model parameters and results of the simulation fit experimental data with reasonable accuracy. 
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1. INTRODUCTION 
 
Soil modeling in geotechnical engineering has developed rapidly in the past recent years as a result of increasing 
need for more accurate prediction of material nonlinearity within computer codes. The efforts in developing new soil 
constitutive models are now concentrated on two more objectives. The models should be conceptually simple and 
computationally efficient to solve geomechanic problems. Behavior of soil-structure systems under cyclic loading 
such as earthquake and waves loading has been one of the main research areas in civil engineering for the past three 
decades. Accurate evaluation of the structural response in soil-structure systems as well as prediction of some 
geotechnical phenomena such as liquefaction could be strongly influenced by cyclic behavior of soil. Accordingly, 
any soil constitutive model used in the numerical models of geotechnical problems should be capable to assess the 
cyclic behavior of soil in the corresponding stresses state.  
 
The conventional elasto-platic models are based on the assumption of interior elastic domain of the yield surface in 
the stress space. This assumption causes conventional plasticity models to fail for predicting of plastic deformation 
during cyclic loading. To overcome this main problem, several cyclic plasticity models have been developed by 
modifying conventional theory of plasticity. The major development in cyclic constitutive elasto-plastic models has 
been based on the kinematic hardening theory (Mrõz 1979, Lade 1997), generalized plasticity theory (Zienkiewicz 
1985, Pastor 1990) and the bounding surface plasticity theory (Dafalias and Herrmann 1980, Bardet 1986, Manzari 
and Dafalias 1997, Dafalias and Manzari 2004).  
 
Kinematic hardening models employ translation and/or rotation of the yield surface in the stresses space. However, 
these models require considerable computer memories to follow the history of sub-yield surfaces and the stress 
reversal surfaces as well. The models are not also appropriate in terms of time efficiency for numerical 
computations. Generalized plasticity theory, utilizes the unit normal to the yield surface and the plastic potential 
surface as well, instead of the explicit definition of both yield and potential surfaces in the stress space.  Using 
separate hardening for loading and unloading stress paths, also incapability to satisfy consistency condition are the 
main setbacks for these models.  
 
On the other hand, bounding surface plasticity models are based on this fact that plastic deformations occur even 
when the stress state lies inside the yield surface. These models use the conventional plastic flow rule, where the 
plastic strain increment is computed at an image stress point on the bounding surface. Employing an appropriate 
projection rule relates this image stress point to the actual stress point on the current loading surface. Bounding 
surface models are conceptually simple, while using less material constants; they showed good capability to predict 
different cyclic and monotonic loading paths with the experimental data (Habte (2006)). One of the most popular 
and efficient bounding surface models which is recently developed, is a model developed by Manzari and Dafalias 
(1997), and Dafalias and Manzari (2004). In the present study this model has been examined more precisely and is 
tried to overcome its drawbacks and also to simplify it.  
 

2. SIMPLE BOUNDING SURFACE PLASTICITY MODEL FOR SANDS  
 
Dafalias and Manzari (2004) proposed a comprehensive constitutive model for sands based on two main concepts: 1) 
the concept of yield/bounding or two surface plasticity formulation; and 2) the state parameter concept. State 
parameter is difference between current and critical void ratio at the same mean effective stress. According to this 
parameter, loose sands with positive state parameter, have contractive behavior and dense sands with negative state 
parameter show dilatancy behavior. 

 ceeψ −= (2.1) 
The formulation is consistent with the critical state framework. It is assumed that only change in the stress ratio 

)/= '( pqη can cause plastic deformation. The basic parameters of the model are defined in the triaxial stress space, 
q and p′ . The incremental elastic and plastic stress-strain relations can be written as    
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dq/3Gdεe
q = , /Kpddεe

v ′= (2.2) 

 Hdηdε p
q = , p

q
p
v dεddε = (2.3) 

in which e
qε and e

vε also p
qε and p

vε are volumetric and deviatoric elastic and plastic strains, respectively. Elastic 

response of the model is based on the hypoelatsic model, which uses the tangent bulk, K , and tangent shear moduli, 
G. d and H are the dilation parameter and hardening plastic modulus corresponding to the increment of stress
ratio, dη , respectively. As the model uses deviatoric plasticity, the yield function is depending on the stress ratio 
given by: 

 0=−−= mf αη (2.4) 
In which α is the back stress ratio, which determines the center of the yield surface in the deviatoric plane and m is 
the radius of the wedge type yield surface. Figure 1 shows yield, critical, dilatancy, and the bounding surfaces of the 
model in p'-q space.  

Figure 1. Schematic presentation of yield, critical, dilatancy and bounding surface 

In Figure 1, the bounding stress ratio bM , and dilatancy stress ratio dM , are related to the state parameter and the 
critical stress ratio, M ,as:   

 ( )ψnexp MM bb −= (2.5) 
 ( )ψnexp MM dd = (2.6) 

In the above equations, bn and dn are positive material constants.  From these equations it can be easily deduced 

that: for loose sands with contractive behavior 0>ψ , bd MMM << ; while for dense sands with 0<ψ ,
db MMM << and at the critical state where 0=ψ , bd MMM == . According to the critical state notion there 

will be no volume change at this stage. Here the hardening, softening and failure behavior occur at 0>H
for bMη < , 0<H for bMη > and 0=H for bMη = , respectively.  
 

2.1. Plastic modulus 
 
In this model, plastic modulus is function of the distance between current and bounding stress ratio as:  

 η)h(MH b −= (2.7) 

where h is a scalar function which measures the distance between current and bounding stress ratio, η)(Mb b −= ,
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and is given by:  
 ( )in0 ηη/bh −= (2.8) 

inη is the stress ratio at beginning of the loading process and is updated at any loading reversal. 0b is a parameter 
depending on the p′ and e .

2.2. Stress-dilatancy  
 
Another basic equation of any elasto-plastic critical state model is the stress-dilatancy relation. In this model, Rowe’s 
dilatancy theory is used as the form of following equation:  

 η)d(MdAd −= (2.9) 

in which dA is also defined as the model parameter.  
 

2.3. Critical state  
 
The critical state is a state in which the combination of eqp ,,' , satisfies simultaneously the critical state line (CSL). 
At this state, the stress ratio reaches to the critical stress ratio, Mpq cc ='/ , and the rate of volume change also is 
independent of the mean effective stress. Although the linear relation is conventionally used for relating ln(p') to  ce ,
for the sands the power law type relation could be more realistic as it is used  in this model  

 ( )ξatc0c /pp'λee −= (2.10) 
 
2.4. Fabric-dilatancy effect  
 
For loose sands, continuous cyclic loading for the undrained conditions causes progressive build up to the pore water 
pressure resulting reduction of mean effective stresses. This fact is the most important reason of catastrophic events 
such as liquefaction and large permanent displacement in soil-structure system. To simulate this phenomenon, a key 
point so called the fabric change effect must be considered in the constitutive equation. Considering Eqs. (2.2) and 

(2.3), the undrained stress path, 0dεdεdε p
v

e
vv =+= leads to a relation between dilatancy parameter and the 

increment of mean effective stress, as η = 1 /p ( q - η p )d d d′ ′ . To reach a desirable result with progressive reduction 
in mean effective stress, the dilatancy parameter must be updated during the dilatancy phase of deformation. The 
observations made by Nemat-Naser and Tobita (1982) revealed that the great change in the particle contact-normal 
orientation during the dilation phase of deformation. By updating dA with volumetric strain as:

( )sz1AA 0d += (2.11) 
The desirable result may be obtained where the incremental relation for z is given by: 

 ( )zszdεcdz max
p
vz

+−−= (2.12) 

in which maxz , is the maximum value of z , zc is a constant parameter, and is the operator. According to MacCauly 

definition: x = if x> 0, and x =0 if x<0. Thus for dilation phase of deformation, with negative volumetric 

strain, dz  is updated resulting an increase to the value of dA , while for contractive deformation dA will be 
constant. Larger value of dA causes more reduction to the effective stress. 
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3. MULTIAXIAL GENERELIZATION  

The wedge type yield surface in the trixial stress condition is generalized to the cone type in the multiaxial stress 
space as  

 ( ) ( )[ ] 0=−−−= mp'2/3p:pf 1/2αsαs (3.1) 

where s and α are the deviatoric stress and the back stress ratio tensors. M , dM and bM can also be generalized 
to the corresponding critical, dilatancy, and bounding surfaces, respectively. Derivations of the yield function with 
respect to the stress tensor leads to the following equation:  

 ( )
m

f
2/3

;:
3
1 αrnIrn-n

σ
−==

∂
∂

(3.2) 

n is the deviatoric component of the unit normal to the yield surface, r is generalization of η from trixial to the 
multiaxial stress space and I is an identity vector. Using n , Lode angle can be defined according to: 

( ) 3tr63θcos n= (3.3) 
θ is varying from 0 to π/3, as the loading changes from compression to extension. Dafalias and Manzari (2004) used 
the following equation as the plastic potential surface:  

 ( ) ( ) ( ) ( )3θcosc-1-c1
2ccθ,g

+
= (3.4) 

where c is the ratio of  M in extension to the corresponding value in compression. Now, the variation of the back stress 
ratio which is used for kinematic hardening can be expressed as:  

 ( ) mψ)nMexp(cθ,g2/3 aaaa −=αα= θθθ mnα ; (3.5) 
The index a in Equation (3.5) represents b, c, d for bounding, critical, and dilatancy surface respectively. Using non-
associated flow rule the increments of plastic strains are obtained as:  

 IInnIRRR; DCBDLd p

3
1

3
1

3
1 2 +






 −−=+′==ε (3.6) 

R′ is the deviatoric component of R and D is the dilatancy parameter and  

 ( ) g3/23C;3gcos
c

c1
c

c1
2
31B −=θ

−+= (3.7) 

Based on the principle of the bounding surface theory and consistency condition, the loading index may be written 
as:  

 
rnn

r:ne:n2σ
σ :KD)(2

G: 3 −−+
=

∂
∂=

trBGK
dK-ddf

K
1L

p

v

p

ε (3.8) 

Now, the generalized form of the plastic modulus, dilatancy relation and fabric change is given as following 
equations:  

 n)ααn,bnαα :)/((:(2/3):)((2/3)K inp −==−= θ 0
b bhphph (3.10) 

 ndnαα ::)( dAdAD d =−= θ (3.11) 

 ( )znz +−−= max
p
vz

zdεcd , ( )nz :+= 1AA 0d (3.12) 

More details of these relations can be found in Manzari and Dafalias (1997), and Dafalias and Manzari (2004).  
 

4. PROPOSED MODIFIED MOEDL 
 
The major drawback associated with Dafalias and Manzari (2004) is related to the non-convexity of function ( )cθ,g ,
which is used for consideration of Lode angle effect in the bounding, critical, and dilatancy surfaces. Figure 2 shows 
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this non-convexity clearly. The lack of convexity becomes more serious for the soils with the friction angle exceeds 
30° and consequently may cause negative plastic work and violation of thermo-mechanical principal laws. To 
overcome this problem, the function ( )cθ,g used by Dafalias and Manzari (2004), Equation 3.4, is replaced by the 
surface proposed by Sloan, (Sheng et. al (2000)):  

 ( ) ( ) ( ) ( )
25.0)(

3θinsc-1-c1
2ccθ,g 44

4

mod +
= (3.4) 

In this surface, the Lode angle is defined by following equation and varies between 6/π− to 6/π from extension to 
compression 

 ( ) 3tr63θs n=in (3.4) 
This surface is convex for wide range of friction angles oo 50.480 ≤′≤ csϕ .

Figure 2 Comparison between Dafalias and Manzari (2004) and proposed models 

5. RESULTS AND DISCUSSION 
 
The proposed method in this study is employed to simulate the soil behavior of an undrained trixial test under 
monotonic loading and a loose sand in a drained cyclic loading. Material constants used in these simulations are 
shown in Table 1.  

 Table 1 Model constants 
Elastic parameters G0

ν
125 
0.05 

Critical sate Mc
c
λ
ec

ξ

1.25 
0.712 
0.019 
0.934 
0.74 

Yield surface m 0.01 
Plastic modulus h0

nb

ch

7.05 
1.10 
0.968 

Dilatancy A0
nd

0.704 
3.50 

Fabric-dilatancy tensor Zmax 
cz

4
600 
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5.1. Monotonic Loading 
 
In the Figures (3a) and (3b) the results obtained for an undrained trixial test are shown. Static liquefaction as one of 
important characteristics of loose sands behavior is simulated successfully. Experimental data given by Verdugo and 
Ishihara (1996) was used to verify the results. Figures (4a) and (4b) also show the good agreement between the results 
for the undrained behavior of dense sands (dilatancy behavior) and the experimental data.   

 
5.2. Cyclic Loading 
 
Figures (5a) and (5b) present the hysteretic stress-strain loops and volume changes for loose sands, in a drained 
loading test, respectively. Figure (6a) and (6b) also present the hysteretic stress-strain loops and volume changes for 
loose sands, in a drained loading test, respectively. It can be noted from Figures that the proposed model precisely 
simulated the soil behavior. The results from simulation of two undrained cyclic loading tests for loose and dense 
sands are shown in the Figure 7a. The hysteretic stress-strain loops for loose sands in the undrained cyclic loading  
test are also shown in Figure (7b). These Figures demonstrate that the capability of the proposed model to simulate 
dynamics liquefaction phenomenon. 
 

(a)  e0=0.907 (b)  e0=0.907 

Figure 3. Undrained stress path and deviatoric stress curve versus axial strain for loose sand   
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(a)  e0=0.85 (b)  e0=0.85 
Figure 5. Hysteretic loops and volume changes for a drained cyclic loading test on loose sand 

.

(a) (b) 
Figure 6. Hysteretic loops and volume changes for drained cyclic loading on a dense sand at two different confining 

pressure  
 

(a)  (b) e=0.85 
Figure 7. Undrained stress path for two different densities and hysteretic loops for loose sand in an undrained cyclic 

loading test (dynamic liquefaction)  
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6. CONCLUSIONS   
 
Although Dafalias and Manzari (2004) model is capable to predict various type of loading paths, but its application 
may be restricted for some type of soils when o30≤′csϕ , due to losing the convexity of the critical surface. In this 
paper, employing an alternative plastic potential surface, g(θ), the non-convexity problem of the model was solved 
and the model application range was extended to o5.48≤′csϕ , which nearly covers all types of conventional 
geomaterials. The results obtained by this modified model both for monotonic and cyclic loading paths for loose and 
dense sands were shown to be quiet encouraging. 
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