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ABSTRACT: 
 
In order to evaluate the influence of ground condition on damage distribution in Villa de Alvarez town (Colima, 
Mexico) during the 2003 Colima earthquake ( MW=7.8), several geophysical surveys were carried out. The 
structure of shallow sedimentary materials and the depth of the basement have been estimated applying the 
Spatial Autocorrelation method (SPAC), using several regular pentagonal arrays with radii up to 25m. Seven S-
wave velocity (VS) profiles have been inverted in Villa de Alvarez by using Rayleigh wave velocity dispersion 
curves for depths down to 30m. According to the local shallow structures obtained, we find clear lateral 
variations in the velocity structure for several urban zones that are correlated with different damage level. 
Microtremor measurements were recorded at 70 sites with a grid of about 100m x 100m interval across 
damaged area. The horizontal-to-vertical spectral ratios (HVSR) were determined in order to obtain the 
predominant period for each site. The predominant period range in the studied zone is about 0.1 � 0.6sec. 
Shorter predominant periods (0.1-0.2sec) were found in damaged zone whereas larger periods (greater than 
0.4sec) were obtained in urban areas without damage. The site effects and their correlation with damage 
distribution on masonry structures observed during the 2003 Colima earthquake were very clear and remarkable. 
One of the main results has been that masonry houses with one or two storeys located on soils with dominant 
period around 0.15sec in Villa de Alvarez, showed the most serious damages. 
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1. INTRODUCTION 
 
The evaluation of local site effects based on subsurface ground conditions is very important to accurately define 
the seismic hazard for a city. The softness of the surface ground and the thickness of surface sediments have 
been observed as two important local geological factors that affect the level of earthquake shaking. Their local 
variations can lead to spatial seismic intensity differences and may have a remarkable influence on the level of 
building damage and on the damage distribution.  
 
The relationship between soil amplification and the level of damage has been recently confirmed for several 
large earthquakes (Mw > 6.5) and analysed with regard to deep soil structures and tall buildings (Seo, 1998; 
Cranswick et al., 2000; Bakir et al., 2002). Also, a large number of observational studies show that local 
amplification effect has played a role in the seismic damage distribution in urban areas for several moderate 
earthquakes (Mucciarelli & Monachesi, 1998; Panou et al., 2005; Navarro et al., 2007). 
 
Since the earlier work of Kanai (1954) methods of ground prospecting based on study of propagation of 
microtremor (ambient noise), have been extensively employed. Several methodologies for analysis of 
microtremor records are commonly used and are based on the following facts: (a) the first resonant period T0 in 
the horizontal-to-vertical spectral ratio for microtremor fits roughly the peak of the transfer function of vertical 
incident S-waves (Nakamura�s method), then, larger amplification are expected for periods around that 
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resonance, also in case of strong motion (Lachet and Bard, 1994, Konno and Omachi, 1998). For simple models, 
T0/4 also approximates the travel-time of a vertically incident S-waves along a sedimentary bound (Ibs-von Seht 
and Wohlenberg, 1999, García-Jerez et al. 2006); (b) The VS - depth variation for the shallow structure is 
strongly related with the shape of the dispersion curve of Rayleigh waves. These data may be retrieved from 
array records of seismic noise (Aki, 1957; Capon, 1969).  
 
The relation between surface wave dispersion curves and elastic parameters of the ground has been extensively 
used in geophysical prospecting, using earthquakes or controlled sources for derivation of 1-D layered ground 
models (e.g. Nazarian, 1984; Navarro et al., 1997; Tokimatsu, 1997; Park et al., 1999). The capability of the 
spatial autocorrelation method for microtremor analysis (SPAC method), for determining the elastic properties 
of shallow sedimentary deposits has been proved as an innovative and convenient technique for this kind of 
studies (e.g. Parolai et al., 2005; García-Jerez et al., 2007; Navarro et al., 2008).  
 
The main goal of this study is to analyze the local site effects in Villa de Alvarez from the shallow S-wave 
velocity structure and their correlation with the damage distribution observed during the 2003 Colima 
earthquake. 
 
 
3. THE 2003 COLIMA EATHQUAKE 
 
The 2003 Colima Earthquake (M7.6) occurred at 20:06:31 (local time) on January 21st, 2003, with epicentre 
around 200 km far from Colima city. The epicentral zone is located in the subduction zone of the Pacific Coast 
of Mexico. The earthquake caused heavy and widely distributed damages in the Colima State for residents and 
buildings, including 26 death and 1,000 injured people. A total of 22,293 dwellings were affected (Sisplade, 
2003). The damage distribution shows that the most serious damages were concentrated in Colima city (6,801 
damaged buildings) and Villa de Alvarez town (2,200 damaged buildings), located just west of Colima city. The 
damage distribution in Villa de Alvarez was concentrated mainly in the east zone of the town (Figure 2) and the 
most relevant damage occurred in adobe and masonry houses with 1 or 2 storeys. 630 dwellings suffered heavy 
damages, 465 dwellings were middle damages and 248 dwellings suffered slight damages. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Location of the epicenter of 
2003 Colima earthquake and Villa de 
Alvarez town in the Colima State.  

 
Figure 2. Distribution of damaged buildings in Villa de 
Alvarez (red block: heavy damage; green block: middle 
damage; yellow block: slight damage) and location of 
SPAC sites (Numbers: 1-7) 
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3. ANALYSIS AND RESULTS 
 
3.1. Computation of HVSR and predominant period 
 
A full study of the dependence of the damage distribution due to the 2003 Colima earthquake on site effects  
was presented by Enomoto et al.( 2004) taking into account the predominant period distribution of soil. A 
summary of it is presented in this section in order to make comparisons among predominant periods, phase-
wave velocity values, shear-wave velocity models and damage distribution in Villa de Alvarez town. 
 
Microtremors measurements were recorded at 63 sites in Villa de Alvarez town with a 100m x 100m grid, in 
order to investigate the ground shaking characteristics. The measures were performed in February 2003, using 
two data acquisition systems composed of three-components high-sensitivity VSE-15D seismometers, which 
have a natural period of 1 second, and a SPC-35 digitizer to record the horizontal and vertical components of 
microtremors at each site. Each observation time was 180 s and the signal was sampled every 0.01 seconds. The 
signal was Fourier transformed and smoothed using a 0.3 Hz Parzen's window and the horizontal-to-vertical 
spectra ratio (Nakamura� method) was applied to obtaining the predominant period at each site. 
 
According to the H/V spectrum results, the predominant period values varied between 0.1 and 0.6 sec. We 
investigated the site effect from the spectral characteristics by carefully dividing the observation sites into two 
groups. The first group corresponds to sites at undamaged zones (Figure 3a) and the second group to those with 
heavily damaged buildings (Figure 3b). The average H/V spectrum in each zone was calculated in order to 
obtain its characteristic predominant period (Figure 4). A clear spectral peak appears for periods about 01 - 0.2 
sec at the heavy damage zone, and also another spectral peak in the range from 0.4 to 0.6 sec. On the contrary, 
the shorter period peak was not found in the undamaged zone, whereas the peak at longer period remains. 
 
 
 
 
   (a) 
 
 
 
 
 
 
 
 
   (b) 
 
 
 
 
 

Figure 3. Examples of spectral ratios in Villa de Alvarez town. (a) Sites located in the undamaged 
zone; (b) Sites located in the heavily damaged zone. 

 
 
3.2. Rayleigh velocity dispersion curves 
 
The shallow structure of Villa de Alvarez town has been studied using a Spatial Autocorrelation method 
(SPAC). The measurements were carried out in March 2007 at seven open spaces (Figure 2). Three of them 
(SPAC 2, 4, 6) were placed at undamaged zones whereas the other four points (SPAC 1, 3, 5, 7) were located on 
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zones with heavily damaged buildings. Shear-wave velocity profiles were obtained for each site, by means of 
inversion of the Rg-wave dispersion curves. 
 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 4. Site effect characteristics from H/V spectra: (a) Undamaged zone; (b) Heavily damaged zone. 
 
 
Vertical components of ground motion, excited by microtremors, were recorded using circular-shaped arrays. 
Five high sensitivity VSE-15D sensors surrounding a sixth central sensor with the same characteristics were 
performed. The radii R ranged from 3 m to 25 m at each point. We used different radii depending on the 
expected thickness of sediments and on the workable space dimension. Recording time was 30 minutes, and the 
signal was sampled with a rate of 100 samples per second. These devices provide an acceptable response for 
frequencies ranging from 0.25 to 70 Hz. All records have been analysed by using an implementation of the 
SPAC method (Aki, 1957). In order to obtain the correlation coefficient ρ(f,R), the cross correlations between 
records on the circle and the central station were calculated in frequency domain. Then, the azimuthal average 
was divided by the autocorrelation at the central station. Finally, phase-velocity of the Rg-wave c(f) was 
computed for each frequency f, applying a previous polynomical fit of the ρ vs. f relation.  
 
Reliable dispersion curves were obtained for frequencies ranging from 3.5 to 28.8 Hz and phase velocity values 
between 223 and 680 m/sec. The phase-velocity values decrease as the frequency increases in all cases. The 
average Rg-wave phase velocity dispersion curve in undamaged zones shows higher phase-velocity values from 
306 to 549 m/sec for frequencies ranging between 3.5 and 21.8 Hz (Figure 5a). In the opposite end, the damaged 
zone presents the lowest phase-velocity values ranging between 223 and 680 m/sec for frequencies between 3.8 
and 28.8 Hz (Figure 5b).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Rg-wave phase velocities (grey lines) measured at the SPAC sites and respective mean velocity 
curves (black lines). (a) Undamaged zones (SPAC 2, 4, 6). (b) Damaged zones (SPAC 1, 3, 5, 7). 
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3.3 Inversion of S-wave profiles 
 
We have inverted Rg-wave phase velocities in order to obtain tentative shear-wave velocity models. As is well 
known, most of iterative inversion methods require building up a proper initial ground model. Since we had 
serious uncertainties on the thickness and the stiffness of the sedimentary deposits in Villa de Alvarez town, we 
built an simple initial ground model taking into account the interpretation of electrical geophysical tests 
performed by the Volcanologic Institute of Colima (Ramirez, 2007) on the damaged building zone (Guillermo 
Prieto street area). In spite of the differences in the dispersion curves for several SPAC measurements, the initial 
model was the same for all SPAC sites. Such initial model is made up of two homogeneous layers of 10 and 40 
m thick (obtained from the electrical surveys) and S-wave velocity values of 200 and 400 m/sec respectively 
(obtained from the dispersion data by means of the λ/3 criterion, e.g. Tokimatsu, 1997) overlaying a half-space 
of 1000 m/sec. The inverted shear-wave velocity profiles are shown in Figure 6 for depths from 0 to 80 m. The 
values of shear-wave velocity for the upper two layers range between 242 and 525 m/sec. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 6. Shear-wave velocity models derived from inversion of phase velocities of Rayleigh waves. 
 
 
The reliability of the inverted models has been checked by means of forward modelling. As known, the good 
agreement found (Figure 7) does not necessarily ensure the uniqueness of the results, but it does indicate that the 
models obtained are compatible with the velocity data. 
 
In order to highlight the differences between the shear-wave velocity models of damaged and no-damage zones, 
the shear velocity models have been also grouped and averaged for each zone. It permits a easier interpretation 
of the predominant periods of soil, their distribution and a possible relation with the damage distribution due to 
the 2003 Colima earthquake in Villa de Alvarez town. There is some degree of lateral variation in shear-wave 
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velocity between that pair of zones. The no-damage zone (SPAC 2, 4 and 6) presents the highest shear velocity 
values, ranging between 332 m/s and 389 m/s for the shallowest layer of 0 to 12 m depth. The average shear 
velocity model for this area exhibits a first layer of 10.4 m thick and average shear-wave velocity of 352 m/s; 
and a second layer with 460 m/sec and 55 m thick overlaying a half-space of 922 m/s. In the opposite end, the 
lowest shear velocities appear in the damage zone (SPAC 1, 3, 5 and 7) with values between 242 m/s and 316 
m/s for depths from 0 to 13 m. The average shear-wave velocity model for the damage area shows a first layer 
of 11.5 m thick and average S-wave velocity value of 282 m/s; and a second layer of 429 m/s and 48 m thick 
overlaying a half-space with 931 m/s S-wave velocity. These results reveal the existence of lateral variation of 
shear-wave velocity in the Villa de Alvarez town, due to heterogeneities of the ground structure, mainly for the 
shallowest layer (depth range from 0 to 13 m). 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. Theoretical phase velocity dispersion curves (grey lines) corresponding with the 
respective optimum models and measured dispersion curves (black lines). 

 
 
On the other hand, the characteristic predominant period on the damage zone (around 0.15 sec) obtained from 
H/V spectral ratio, has been compared with the predominant period calculated from the transfer functions 
(maximum peak period) for vertically incident S wave (Figure 8). A good agreement between both values has 
been found. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Example of transfer function calculated for some ground models in the damage zone. (a) 
SPAC 5; (b) SPAC 7. 

 
 
4. CONCLUSIONS 
 
We analyzed the site effect characteristics in Villa de Alvarez town, by dividing the microtremor observation 
sites into two groups: no damage sites and heavy damage sites, regarding the 2003 Colima Earthquake. 

(a) (b) 
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According to the H/V spectral characteristics, a different behaviour was clearly observed. In the heavy damage 
zone, clear spectral peaks were found in a short period range between 0.1 and 0.2 sec, whereas these peaks did 
not appear in the undamaged sites. 
 
Detailed shear-wave velocity structure and depth of the basement have been estimated at seven locations in the 
town by means of inversion of Rayleigh-wave dispersion data obtained from circular-shaped array setups. These 
places were considered according to their distribution on damage and undamaged zones. The average Rg-wave 
phase velocity dispersion curve in the no damage zone shows higher phase-velocity values in comparison with 
the damage zone. The last one presents the lowest phase-velocity values ranging from 223 to 680 m/s for 
frequencies between 3.8 and 28.8 Hz. 
 
The comparison among the mean ground models which characterize each urban zone in Villa de Alvarez town, 
reveals a significant lateral variation in the S wave velocity. The more important feature is the existence of a soft 
shallow layer in the damaged zone with S wave velocity ranging 242 m/s and 316 m/s for depths from 0 to 13 
m. This result is good agreement with those obtained from other exploration methods and with the presence of 
the sand and gravel deposits in de zone due to a local river. 
 
Probably, the high ground amplification in the damaged zones for periods from 0.1 to 0.2 sec had a strong 
influence on the heavily damaged buildings because of a resonant effect between the shallow ground structure 
and the building response. 
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