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ABSTRACT : 

By the method of Fourier-Bessel series expansion of wave functions, presented is an analytical solution to the
stationary dynamic response of alluvial valley containing arbitrary number of circular-arc layers incident by 
plane P wave. Taking the three-layer valleys as examples and using the spatial distributions of amplitude and
phase difference of stationary ground motion, the influences of the layering of valley deposit media on the 
ground motion are studied in a broad frequency band. 
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1. INTRODUCTION  
 
The study of analytical solution to the problem of seismic wave scattering and diffraction by regular alluvial
valley is an important topic in earthquake engineering. Using Fourier-Bessel series expansion and Mathieu 
series expansion to wave functions, Trifunac (Trifunac, 1971) and Wong and Trifunac (Wong and Trifunac, 
1974) obtained the analytical solution for the SH wave scattering by the two-dimension valley with 
semi-circular and semi-ellipse section, respectively. Thereafter, the method of Fourier-Bessel series expansion 
method was used to solve the scattering and diffraction of different types of waves by different valleys with
circular-arc section (Todorovska and Lee, 1991; Liang etc, 2001, 2003, 2006; Li etc, 2005; Li and Zhao, 2004;
Yuan and Liao, 1995). 
 
However, the above studies all presumed that the deposit in the valley contains single medium. By the method
used by Todorovska and Lee (1991), Liang etc (2000, 2001, 2003) solved the scatterings of body waves by
two-dimension (2D) layered valley with shallow-arc section, and studied the influences of the sequence of
alluvial layers, the stiffness and thickness of soft interlayer, etc., on ground motion. But due to complexity of
the problem, their studies considered the valley with only two layers. In this paper, firstly, by using the same
method as Todorovska and Lee (1991), deduced is the analytical solution to the scattering of P wave by the 2D
valley with shallow-arc section which contains arbitrary number of layers. And then, with the three-layered 
valley as example, the influence of the layering of deposit media in the valley on the stationary ground motion
is discussed in a broad frequency band. 
 
 
2. MODEL  
 
The model of multi-layered alluvial valley with shallow-arc section is shown in Fig.1. There are L layers of 
alluvial media above the half space, l = 0,1,2,…,L-1, with the sequential number of half-space medium being L, 
therefore, there are altogether L+1 kinds of media in the model. The boundaries between any two adjacent
media are all shallow arcs, with their centers all being at the point of O1. The half-width, the depth, and the 
radius of each arc are denoted by al, hl, and bl, respectively. The height of center O1 is h0=b1–h1. The shear-wave 
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velocity, the density, and the Poisson’s ratio of each medium are denoted by )(
s

lc , )(lρ , and )(lν , respectively, 
so the corresponding Lame constants and the dilatational-wave velocity are 
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Figure 1 The model of alluvial valley               Figure 2 The scattering of waves 
 
The incident P wave is harmonic plane wave, with its frequency being ω and incident angle γp. In the coordinate 
system x-y, its potential function with time factor exp(-iωt) being omitted is 
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where i is the imaginary unit, 1i −= , and )(

p
Lk  is the P wave number of half-space medium. Similarly,  
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are the P and the S wave numbers of the l-th medium, respectively. In the stationary case, the potentials of P and 
SV waves satisfy the following Poisson’s equation 
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The boundary conditions contain the zero-stress condition on the surface 
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and the continuity conditions at the l-th arc boundary 
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where t denotes the stress, and u the displacement. 
 
 
3. POTENTIAL FUNCTIONS OF SCATTERING WAVES  
 
Before solving out the displacement field, in order to conveniently applying the surface zero-stress condition, 
the method used by Todorovska and Lee (1991) is still used here, i.e., a circular arc with very big radius is
introduced to approximately simulate the level surface of the half space. As shown in Fig.2, the radius of the arc
is R, and it centers at the point of O2. And accordingly, in the polar system r2-θ2 shown in Fig.2, zero-stress 
condition (2.5a) is changed into 
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3.1 The Potential Functions of Scattering Waves in the Half Space 
 
In the half space, the free-field waves include the incident P wave iΦ , the reflected P wave rΦ , and the 
reflected SV wave rΨ . Referring Zhang (2008), the potentials of the free-field P and SV waves can be 
expressed in coordinate system r1-θ1 by 
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In equation (3.2) and (3.3), if n = 0, then 1ε =n , while if n > 0, then 2ε =n . In the half space, apart from the 
above free-field waves, there also exist the scattering waves due to the presence of the arc-shaped multi-layered 
valley, as shown in Fig.2, where )(

1
LΦ  and )(

1
LΨ  represent the cylindrical waves radiating from the center O1, 

while )(
3

LΦ  and )(
3

LΨ  describe the cylindrical standing waves residing between the “curved” surface and the
L-th small arc boundary. In the coordinate systems of r1-θ1 and r2-θ2, these two kinds of waves have the 
following Fourier-Bessel series expressions respectively 
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By the interior Graf addition formula (Zhang, 2008), the above wave functions can be expressed in the 
alternative coordinate system as follows 
 

∑
∞

= ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
+

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

0 2
)(

,122
)(

,122
)(

s

2
)(

,122
)(

,122
)(

p

22
)(

1

22
)(

1

)cossin)((J
)sincos)((J

),(
),(

m
L

m
L

m
L

m

L
m

L
m

L
m

L

L

mDmCrk
mBmArk

rΨ
rΦ

θθ
θθ

θ
θ

               (3.6)

 

∑
∞

= ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
+

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

0 1
)(

,311
)(

,311
)(

s

1
)(

,311
)(

,311
)(

p

11
)(

3

11
)(

3

)cossin)((J
)sincos)((J

),(
),(

n
L

n
L

n
L

n

L
n

L
n

L
n

L

L

nDnCrk
nBnArk

rΨ
rΦ

θθ
θθ

θ
θ

                (3.7)

 
where 
 

∑
∞

=
+

−

−

+

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

0
)(

,11
)(

s
)3(

)(
,11

)(
s

)3(

)(
,11

)(
p

)3(

)(
,11

)(
p

)3(

)(
,12

)(
,12

)(
,12

)(
,12

)(E
)(E
)(E
)(E

n
L

n
L

mn

L
n

L
mn

L
n

L
mn

L
n

L
mn

L
m

L
m

L
m

L
m

DDk
CDk
BDk
ADk

D
C
B
A

                           (3.8a)

 

∑
∞

=
+

−

−

+

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

0
)(
,32

)(
s

)1(

)(
,32

)(
s

)1(

)(
,32

)(
p

)1(

)(
,32

)(
p

)1(

)(
,31

)(
,31

)(
,31

)(
,31

)(E
)(E
)(E
)(E

m
L

m
L

nm

L
m

L
nm

L
m

L
nm

L
m

L
nm

L
n

L
n

L
n

L
n

DDk
CDk
BDk
ADk

D
C
B
A

                           (3.8b)

 

)]()1()([
2
ε

)(E )()()( xxx q
kj

kq
kj

jq
jk −+

± −±= ll                           (3.9)

 
In equation (3.9), if q = 1, then )()( xq

nl  denotes the 1st kind Bessel function )(J xn , while if q = 1, then )()( xq
nl

denotes the 1st kind Hankel function )(H(1) xn . And in equation (3.8), D is the distance between the center O1 and 
O2, as shown in Fig.2. 
 
 
3.2 The Potential Functions of Scattering Waves in the Deposits 
 
In the l-th layer, there exist two kinds of cylindrical standing waves, i.e. the scattering waves of )(
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shown in Fig.2. In the coordinate systems r1-θ1 and r2-θ2, the potentials of these scattering waves have the 
following expressions 
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By the Graf addition formula, the expressions of the above wave functions in the alternative coordinate system
are 
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When l=0, the cylindrical radiating waves represented by equation (3.10) and (3.13) do not exist, and thus 
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By introducing the boundary conditions, the undetermined coefficients, }{ )(

,11
l

nA  etc., in equation (3.4) through 
(3.7) and equation (3.10) through (3.15) can be solved layer by layer, the detailed deduction can be referred to 
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Zhang (2008). And thus, the final displacement and stress field can be calculated with these coefficients at hand
(Zhang, 2008). 
 
 
4. ANALYSIS OF RESULTS 
 
At first, define the following non-dimension parameter 
 

)(
s

)(
s π

2
L
L

L
L

c
aa ω

λ
η ==                                    (4.1)

 
which is the ratio between the valley width, La2 , and the wavelength of the S wave in the half space, )(

s
Lλ . It 

is an indirect gauge of the frequency of incident wave, i.e. the bigger the value of η , the shorter the wave 
length of incident wave )(

p
Lλ , and the higher its frequency ω . 

 
The analysis of the convergence of series solution has showed that at least for the incident frequency range 
η≤20, the series solution presented in this paper can converge to the true solution. As to the value of the radius,
R, of the big arc that simulates the level ground surface, generally the value of R = 102bL~105bL can satisfy the 
precision requirement. The displacement field of the stationary dynamic response of valley under the harmonic
incidence is complex-valued, i.e. 
 

),(ie|),(|),( yxyxuyxu ϕ=                                 (4.2)
 
where |u(x,y)| is the amplitude of ground motion whose spatial variation describes the distribution of ground 
motion intensity, and φ(x,y) is the phase of ground motion whose spatial variation describes the lag relation of
harmonic vibrations between different spatial points. In the following discussion, the ground surface amplitude
|u(x,0)| and the absolute value of phase difference |Δφ(x,0)| will be used as the main parameters to study the 
influences of the properties of the incident wave and valley on the stationary ground motion. 
 
The three-layered valley will be used as example to study the scattering effect of the layering of the valley 
deposits on the incident P wave. Three kinds of valley are considered here, i.e., the single-layered valley (V-1), 
the three-layered normally alluvial valley (V-2), and the three-layered abnormally alluvial valley (V-3), whose 
geometrical and physical parameters are given in Table 1. The Poisson’s ratios of all media are uniformly taken
as 0.25. And in V-3 exists soft interlayer. 
 

Table 1  The geometrical and physical parameters of alluvial valleys 
Physical parameters Valley type Geometrical parameter 

h1 : h2 : h3 : a3 S-wave velocity ratio Density ratio 
V-1 
V-2 
V-3 

0.4 : 0.7 : 1.0 : 2 
0.4 : 0.7 : 1.0 : 2 
0.4 : 0.7 : 1.0 : 2 

200 : 200 : 200 : 400 
150 : 200 : 300 : 400 
200 : 300 : 150 : 400 

1.6 : 1.6 : 1.6 : 1.8 
1.5 : 1.6 : 1.7 : 1.8 
1.6 : 1.7 : 1.5 : 1.8 

 
The spatial variations of ground motion amplitudes and phase differences of the above three valleys under the
vertical incidence of P wave (γp = 0º) are given in Fig.3, which gives the results for the incident frequencies η = 
1.0, 4.0, and 16.0. While Fig.4 presents the results corresponding to the inclined incidence (γp = 45º).  
 
From Fig.3 and Fig.4 it can be seen that the ground motion exhibits distinct characteristics of the interference of 
scattering waves. On the amplitude curves |ux|~x/a3 and |uy|~x/a3 appear some local minima, where the 
displacement amplitudes are very low, however, at such spatial points, the phase differences reaches their peaks. 
Such spatial points on the surface are similar to the “wave nodes” of standing waves, whose vibrations cease or
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drop to a low level due to the interferences of different traveling waves. At such wave node, the harmonic
ground vibration differs from its adjacent point in a relatively high magnitude due to their large phase lag, that
is to say, the two adjacent spatial points will undergo comparatively large relative displacement. And thus at
such site, as to the horizontal dimension, relatively high tension or compression stress would appear, while as to
the vertical dimension, relatively high shear stress would appear and the ground motion would demonstrate
torsion effects accordingly. 
 
With the increase of the incident frequency, the wavelength decreases and the incident wave becomes sensitive 
to the layering of valley deposits, and accordingly, the variation of ground motion becomes complicated, with
more wave nodes appearing. And the layering effects can be clearly noticed. As compared with single layered 
V-1, at some points, the displacement amplitudes of V-2 and V-3 are very high, while very low at the others, 
which is dependent on the incident frequency. And as to the high-frequency incidences, i.e. η = 4.0 and 16.0, on 
the surface outcrops of the soft interlayer in V-3, there appear distinct peaks on the spatial variation curves of
the ground motion amplitudes, indicating significant interference of scattering waves and distinct energy focus
occurring in the soft interlayer. 
 
 
5. CONCLUSIONS  
 
In this paper, by the Fourier-Bessel series expansion technique of wave functions, deduced is the analytical
solution to the two-dimension scattering problem of the incident plane P wave by the alluvial valley containing 
arbitrary number of arc-shaped deposit layers. Using this analytical solution, taking the three-layered valley as 
example and utilizing the ground motion amplitude and phase difference as the parameters, the influence of the
layering of the valley deposits on the ground motion is discussed in a broad frequency band. The results
demonstrate that as to the multi-layered valley, when the incident frequency is high, the scattering waves
exhibit distinct interference and energy focus phenomenon, the ground motion also presents the 
standing-wave-like properties with many wave nodes appearing, and furthermore, the soft interlayer in the
valley can absorb and trap much energy of scattering waves, which leads to the high amplitude of the ground
motion on the outcrops of the soft interlayer. 
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(a) η = 1.0 
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(b) η = 4.0 
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(c) η = 16.0 
 

Figure 3 The case of vertical incidence (incident angle γp = 0º) 
V-1;         V-2;          V-3 
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(a) η = 1.0 
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(b) η = 4.0 
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(c) η = 16.0 
 

Figure 4 The case of inclined incidence (incident angle γp = 45º) 
V-1;         V-2;          V-3 

 


