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ABSTRACT :

An analytic method is developed for scattering of SH-wave by a subsurface elastic cylindrical inclusion below a
semi-cylindrical hill. During the solution, the whole model is divided into two parts. The first one is a circular
domain which includes the boundary of the hill, and all the rest canbe considered as the second one. Then the
displacement solutions satisfying the boundary conditions are constructed in two parts respectively. According
to the “conjunction” condition of junction interface, two domains are matched up on common boundary by the
method of moving coordinate. Then employed to the boundary condition around the elastic cylindrical inclusion,
a series of infinite algebraic equations about the problem can be obtained. The calculating results of dynamic
stress concentration factor around elastic cylindrical inclusion are plotted to show the effect of some parameters
on DSCF.
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1. INTRODUCTION

Many scholars engaged in researching the anti-seismic and blast-resistant quality of the underground structures.
The theories of scattering of elastic wave and dynamic stress consentraion are widely used to analyse the
dynamic characteristics of the underground structures. The analytic methods about deep buried structures
(neglects the influence of ground) are accurate enough for designing purpose. While for the shallow buried
structures (the influence of ground must be calculated), most of the studies are concerned with the structures in
full half-spacel!-3], few of them discuss the influence of topography on the underground structures. Until recently
antiplane SH-deformation of a semi-cylindrical hill above a subsurface cavity is studied by Liu Diankui (1.

In this paper, scattering of SH-wave by a subsurface elastic cylindrical inclusion below a semi- cylindrical hill
is studied in half-space based on the idea of “conjunction”, using complex variable function and multi-polar
coordinate methods. The whole solution domain is divided into two parts, the first one is a circular domain,
including the boundary of the hill; all of the rest are considered as the second one. Firstly, a standing wave
function is constructed in circular domain, which satisfies the conditions that stress free at the edge of the hill
and arbitrary at other part; secondly, in domain II the scattered wave is constructed satisfying the condition of
stress free at the horimntal surface automatically. Finally, by moving coordinates, two parts are conjoined on
common boundary, and satisfying the boundary condition at the edge of elastic cylindrical inclusion, then the
problem to be solved can be reduced to solving a series infinite linear algebraic equations.

2. BASIC THEORIE
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2.1 Description of the problem

The model of the elastic half-space with the presence of semi-cylindrical hill and subsurface elastic
cylindrical inclusion is shown in Fig.1. To solve the scattering of SH wave by the model is to find a
wave function which satisfies: (1) the stress free at horizontal surface Sand the edge of hill C; (2) the
displacement and stress continual at the edge of elastic cylindrical inclusion 7'. The division of the
model can be seen in Fig?2, part [ is a circular domain, including the boundary Cand C, and part II
consists of boundary ,§. Sand 7. Therefore, Cand Sare the common boundary of the two parts, and
the displacement and stress function should satisfy the continuity condition at the common boundary.
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Figurel The model of a subsurface elastic cylindrical Figure 2 The division of the solution domain

inclusion below a semi-cylindrical hill

2. 1.1 Governing equations

Introducing complex variables z = x + 7y, r=x— 7y, in complex plane (Z,}) , the displacement function of
steady-state SH wave in homogeneous and isotropic media should satisfy the following governing equation

—+— W =0 2.1
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where W is the displacement function, ¢ '® is its relationship with time factor(and will be omitted),  is the
circular frequency of #(x, 3,7), £ =w/c, is the wave number of input wave; ¢ =,[u/p is the shear wave

velocity; p,, p,and p;, 1, are mass density and shearmodulus of media and elastic inclusion respectively.
In polar coordinates, the stress expressions can be written as
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2. 1.2 A standing wave in domain |

In circular domain I, a standing wave is assumed, which satisfies the following boundary condition
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where /7 is the amplitude of incident wave, C  areunknown coefficients.

The standing wave solution due to Eqn.2.3 can be expressed as
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where a = (men 2.5)

The stress expression from Eqn.2.4 is
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2 1.3 Scattered wave in domain 7

In domain II, the scattered wave # consists of two parts: the scattered wave W;“’ from the canyon and the

scattered wave Wf(‘) from the elastic cylindrical inclusion, which are constructed satisfying the traction free at

horimntal surface §, so #(® takes the form
W (Z,})Z W;(‘Y)(Z,})Jrl/lft” (Z z) 2.7

Applying the symmetry of the scattering of SH wave and the method of multi-polar coordinate, in complex
plane (z,2), #2”and #;” can be written as
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where & is the complex coordinates of the elastic cylindrical inclusion centre in the plane with origin at O,

and s the conjugate of complex variable « .



In complex plane ( ,}1) , Eqn.2.8 and Eqn.2.9 are transformed to the following forms
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n which @ =d-d . According to Eqn.2.2, the corresponding stresses can be expressed in complex plane

(z,2) as
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2. 1.4 A standing wave in elastic inclusion I’

In complex plane (21,21) , the displacement function and the stress function of standing wave in elastic
cylindrical inclusion canbe given by
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2. 1.5 Incident wave and reflected wave
In complex plane ( z z) , incident wave ") and reflected wave #A”) can be given by
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where ¢ is incident angle.

The stresses due to #'” and #4”) can be expressed as
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In complex plane ( z, ;l) , Eqn.2.18 to Eqn.2.21 take the forms

/%'1 a T T, —ia
/ — —(a+d)e” +(z+d)e ]
(2. 5)= e ‘ (2.22)
o — A aedre ™ + G ™ )
W (7,7) =€ (2.23)
Lt
[(7+d)é% +(z;+d )@ ]
T = ik W, cos(0,+a)e? : ' (2.24)
Aarde s Gr ]
t = iu W cos(0, —a)e? : (2.25)

2.2, Boundary Condition



Two domains are assembled together in complex plane ( ZpZ ), and the boundary condition of elastic

cylindrical inclusion should be satisfied, which means that the displacements and stresses at the edge of
mclusion should be continual. So all the conditions are
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Substituting the expressions of displacements and stresses into Eqn.2.26, then multiplying both sides of
equations by e and integrating over the interval (—7,7 ), so a series infinite algebraic equations solving the
unknown coefficients 4,8, ,C
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D, can be obtained.

2.2 Dynamic Stress Concentration Factor (DSCF)

The dynamic stress concentration factor (DSCF) around the elastic cylindrical inclusion 7’can be written as

. =t /1’0| (2.27)
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in which

amplitude of incident stresses. For the problem studied in this paper, the total stresses can be written as

are the total stresses around the elastic cylindrical inclusion; 7, = p, 4/, stands for the largest
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3. SUMMARY

(1) In Fig.3, under incident SH wave vertically, the smaller shear modulus of elastic cylindrical inclusion
compared with the surrounding media, the bigger dynamic stress concentration factor on the edge of inclusion.
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Figure 3 Distribution of DSCF on the edge of elastic cylindrical inclusion

(2) The variation of DSCF around the edge of elastic cylindrical inclusion with //zis shown in Fig.4. The dyn



amic stress concentration factor around inclusion shows periodicity with the increasing of 4/« .
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Figure 4 Variation of DSCF with h/a
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