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ABSTRACT : 

The general theoretical solution for Love-Type surface waves in viscoelastic media provides theoretical
expressions for the physical characteristics of the waves in elastic as well as anelastic media with arbitrary
amounts of intrinsic damping. The general solution yields dispersion and absorption-coefficient curves for the 
waves as a function of frequency and the amount of intrinsic damping for any chosen viscoelastic model.
Numerical results valid for a variety of viscoelastic models provide quantitative estimates of the physical
characteristics of the waves pertinent to models of Earth materials ranging from small amounts of damping in 
the Earth’s crust to moderate and large amounts of damping in soft soils and water-saturated sediments. 
Numerical results, presented herein, are valid for a wide range of solids and applications. 
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1 INTRODUCTION 

Love in 1911 (1944) first established the solution for surface waves with horizontal particle motion in elastic 
media comprised of a layer over a half space. The solution was later extended to multiple layers of elastic media 
using a matrix formulation introduced by Thompson (1950) and implemented by Haskell (1953).  Borcherdt 
(2008) extended the solution for Love-Type surface waves to arbitrary multiple layered viscoelastic media with 
the resulting solution being valid for an infinite number of viscoelastic models, such as Voight, Maxwell, and 
Standard Linear solids. This paper discusses the general solution for viscoelastic media. It describes the inferred 
physical characteristics of Viscoelastic Love-Type surface waves. It provides numerical estimates of dispersion 
and absorption curves that are valid for a wide range in Earth materials with various amounts of damping.  

2. ANALYTIC SOLUTION AND DISPLACEMENTS  

The problem of the steady-state response of a stack of 1n −  layers overlying a half space is specified by 
Borcherdt (2008) using notation for the media and boundaries as shown in Figure (1.1), where thickness  and 

depth  of the top of the  layer and material parameters for   viscoelastic  layer are density, 
md

1mz − m m m
th th ρ , 

wave speeds and reciprocal quality factors for homogenous S and P waves , namely 
.  1 1,  Q  and Q

m m m mHP HP
− −

( )mu zG th
11D

, HSv v ,HS

Using this notation, application of the boundary conditions of vanishing stress at the free surface and continuity of 
stress and displacement at the boundaries to assumed displacement solutions allows the complex displacement, 

 in the m  viscoelastic layer to be expressed in terms of the complex amplitude, , of the solutions at 
the free surface (Borcherdt, 2008)  as 
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Figure (1.1). Diagram illustrating notation for the problem of a Love-Type Surface wave on multiple layered 
viscoelastic media. 
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and in the half space as  
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and  

22
Sb princ value k kβ −ipal≡ .  (1.7) 

The existence of values for the complex wave number k that satisfy (1.4) establishes solutions for a Love-Type 
surface wave in multilayered viscoelastic media overlying a viscoelastic half space exists (Borcherdt, 2008). 
Hence, with the magnitude of the phase velocity Lv  and the absorption coefficient La  for a Love-Type surface 
wave of circular frequency ω  expressed in terms of the real and imaginary parts of the complex wave number  
by  

k
L Rv k=ω and L Ia k= − , the problem of finding the solution for a Love-Type surface wave reduces to the 

problem of finding pairs of values for the wave speed and absorption coefficient ( ),L Lv a  that satisfy (1.4) for a 
given set of viscoelastic material parameters characterizing each layer and the half space.  
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The corresponding physical particle displacements specified by the real part of the complex displacements (1.2) 
and (1.3) in the  layer from Borcherdt (2008) are given by thm

 ( ) [ ] ( ) 2ˆexp sin 2
Rm I m Ru z k x H t k x xω π δ= − + m+⎡ ⎤⎣ ⎦

G
  (1.8) 
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in the half space by  
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and at the free surface by  
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Expression (1.13) indicates that the physical displacement in an anelastic viscoelastic half space shows a 
superimposed sinusoidal dependence on depth that decays exponentially with distance from the interface. It 
indicates that the displacement in the half space (1.13) is out of phase with that at the surface (1.14) by an amount 
that depends on the thickness of intervening layers and their viscoelastic material parameters. It indicates that the 
physical displacement attenuates with absorption coefficient L Ia k= −

1 1 Q 0
n nHS HP

− − =

 along both the interface at depth and the 

free surface. The expression also shows that for elastic media with Q =  that no superimposed 

sinusoidal dependence exists, displacement at the surface is in phase with that in the half space, and no attenuation 
occurs in the direction of phase propagation.  

The solution for a Love-Type surface wave in viscoelastic media is most readily considered for the case of a single 
layer overlying a half space.  For the case that 2n = , (1.4) reduces to the complex period equation (Borcherdt 
2008) 
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]F  is defined by   where the function 
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Hence, for a given set of material parameters 2 1ρ ρ , 
2 1HS HSv v , 

1
1

HSQ − , and  
2

1
HSQ − (1.15) and (1.16) show 

explicitly that pairs of values of  
1L HSv v  and 

1L HSa a  that yield a non-negative real number for the 

right-hand side of (1.15) represent the solution for a Love-Type surface wave of circular frequency ω  for 
viscoelastic media with a layer of thickness .  For elastic media with , the period 

equation  simplifies to the familiar period equation for elastic media, namely  
1 1 2HS HS =d 1 1 0Q Q− −=
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showing that a solution exists for values of Lv
1 2HS L HSv v v that  satisfy < < . 

3. NUMERICAL CHARACTERISTICS OF LOVE-TYPE SURFACE WAVES 

Quantitative descriptions of the physical characteristics of a Love-Type surface wave are specified by solutions 
for pairs of values for wave speed Lv and absorption coefficient La  that satisfy (1.15). Corresponding estimates 
of the normalized absorption coefficient ratio 

1L HSa a as a function of the wave-speed ratio 
1L HSv v  for values 

of the ratio that satisfy 
1 2 1

1 L HS< < HS HSv vv v  are shown for a given set of viscoelastic material parameters 

for the fundamental mode of a Love-Type surface wave in Figure (1.18). Values chosen for the material 
parameters to solve (1.15) are  2 1 1.283ρ ρ = , 

2 1
1.297HS HSv v = , , and a set of values for 

intrinsic absorption in the layer as indicated in the figure ranging from low loss, , for crustal material 

to significant  loss, Q , for soft soils.  The curves indicate that the dependence of the 

absorption-coefficient ratio on the wave-speed ratio varies significantly as the amount of intrinsic absorption in 
the layer increases. 

2

1 0.01HSQ − =

1Q − =
1HS

1

1 0.5HS
− =

0.01
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Figure (1.18). (a) Normalized absorption coefficient and (b) 1 Ld vω  versus normalized wave speed for the 
fundamental mode of a Love-Type surface wave in viscoelastic media with material parameters as indicated.  

Dispersion curves corresponding to the absorption curves in Figure (1.18)a are shown in Figure (1.18)b for the 
fundamental mode of Love-Type surface waves. The plots indicate that for the chosen material parameters, 
variations in the curves due to differences in the amount of intrinsic absorption in the layer are most evident for 
amounts of intrinsic absorption . For low-loss amounts of intrinsic absorption in the layer with 

 the deviations in the curves from those for an elastic solid are small and less discernible at the scale 

plotted. 

1

1 0.1HSQ − ≥

1

1 0.1HSQ − <

The distribution of physical displacement with depth as inferred from (1.8) through (1.14) computed as a function 
of depth in units of fractions of a wavelength 2 Rkλ π≡  along the surface  is shown from Borcherdt (2008) in 

Figure (1.19). The amplitude distribution corresponding to each value of 
1

1
HSQ −  is that for which the wave-speed 

ratio 
1L HS

1

1.25v v =  and the viscoelastic material parameters are as indicated.  

The curves in Figure (1.19) indicate that for the chosen material parameters, the amplitudes decrease by about 25 
percent within a depth of about 17 percent of a wavelength below the surface. The curves indicate that deviations 
in the amplitude distributions due to increases in intrinsic absorption in the layer begin to become apparent for 
depths greater than about 20 percent of a wavelength and values of . For depths greater than about 20 

percent, the decrease in amplitude with depth increases with an increase in intrinsic absorption. For the material 
parameters chosen, the dependence of the normalized amplitude distribution on depth for low-loss media 
( ) is nearly indistinguishable at the scale plotted from that for corresponding elastic media. 

1

1 0.1HSQ − >

1 0.1HSQ − <
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Figure (1.19). Normalized amplitude distribution for the fundamental mode of a Love-Type surface wave in 
viscoelastic media with material parameters as indicated.  

The procedure used here to derive quantitative estimates of the physical characteristics of Love-Type surface 
waves on an arbitrary viscoelastic media with general material parameters  HSv n be 

readily extended to any particular viscoelastic solid as might be characterized by combinations of springs and 
dashpots. As an example, if the viscoelastic model for the layer is chosen as a Standard Linear solid with material 
parameters 

1, , for 1, 2
j j jHSQ jρ− =  ca

1, , , and  p e rτ τ Μ ρ

2, , and  
and the model for the half space is chosen as a Maxwell solid with material 

parameters μ η ρ , then specification of circular frequency ω  and these material parameters  implies 

 from Borcherdt (2008) are easily specified as  1  and  for 1, 2
jj HSHSQ v j− =

 
( )

1
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p e
Q e pω τ τ

ω τ τ
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+

−
  (1.20) 

and  
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and in the half space by 

 
2HS
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and  
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Hence, specification of the material parameters for these particular viscoelastic models together with frequency 
ω  allows the general material parameters 

2 1
1

2 1, , and  for  1, 2
jHS HS HSv v Q jρ ρ − =  to be determined, from 

which curves similar to those in Figures (1.18) and (1.19) for a Love-Type surface wave can be readily derived.  
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