MODELING OF DRAINAGE BEHAVIOR FOR DYNAMIC EFFECTIVE STRESS ANALYSIS BY UNDRAINED CONDITION

Yasuto TAKESHIMA¹, Shun-ichi SAWADA², Susumu IAI³, Koji ICHII⁴, Osamu OZUTSUMI⁵, Masaki ADACHI⁶, Akira YOSHIDA⁷, Takaaki IKEDA⁸, Natsuhiko OOTSUKA⁹ and Yasuyuki UMEKI¹⁰

SUMMARY

A method to consider excess pore water pressure dissipation in high permeable ground, such as gravel drains installed as remedial measures against liquefaction, is proposed in the dynamic effective stress analysis with undrained condition. Effect of the drainage is considered by increasing apparent liquefaction resistance so that the excess pore water pressure in the high permeable ground becomes same with the model under undrained condition. The increase of the liquefaction resistance is evaluated by cumulative damage concept. The cumulative damage at improved ground is obtained by the consolidation analysis subjected to the same stress cycles with unimproved ground. Large-scale model tests were simulated. Responses such as acceleration, displacement and excess pore water pressure show good agreement with the test results.

INTRODUCTION

In resent years dynamic effective stress analysis has been becoming a powerful technique to evaluate the liquefaction-induced damage to structures. It is also useful to evaluate efficiency of remediation measures against liquefaction. Many computer codes have been developed. Some codes consider seepage of excess pore water pressure by Biot’s or Terzaghi’s equation. However some do not because duration of the earthquake is too short for excess pore water pressure to dissipate. In the latter case it seems efficient to

¹ Research engineer, Oyo Corporation, Saitama, Japan, Email: takesima-yasuto@oyonet.oyo.co.jp
² Vice manager, Oyo Corporation, Saitama, Japan
³ Professor, Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan
⁴ Senior Researcher, Port and harbor research institute, Kanagawa, Japan
⁵ Chief engineer, Inst. of Japanese Union of Scientists & Engineers, Tokyo, Japan
⁶ Research engineer, Mirai Construction Co., Ltd., Tokyo, Japan
⁷ Section chief, Raito Kogyo Co., Ltd., Tokyo, Japan
⁸ Research engineer, Technical Research Institute, Tobishima Corporation, Tokyo, Japan
⁹ Department manager, North Japan Port Consultants Co., Ltd., Hokkaido, Japan
¹⁰ Research Engineer, Coastal development institute of technology, Tokyo, Japan
analyze high permeable ground such as gravel drains installed as remedial measures against soil liquefaction. In this paper the method to consider the high permeable ground by effective stress analysis under undrained condition is proposed.

MODELING OF DRAINAGE EFFECT

Liquefaction remediation measures based on excess pore water pressure dissipation have an effect to restrain the excess pore water pressure generation with high permeable material installed in the ground. Gravel piles installed in the ground keep excess pore water pressure less than initial confining stress. The cumulative damage concept that has been used for the design of the gravel drain method is extensively applied to evaluate this effect. The idea is that effect of drainage to keep excess pore water pressure low is replaced by high increasing liquefaction resistance of model. The procedure to model the drainage effect using the cumulative damage concept is shown in Figure 1.

![Figure 1 Procedure to model the drainage effect](image)

Increase of the liquefaction resistance in the model is evaluated from the decrease of the cumulative damage, which means that the liquefaction resistance curve of the improved ground moves to the right depending on the cumulative damage ratio, as shown in Figure 2. The cumulative damage ratio is calculated by

\[
\delta = \frac{D_{\text{max}}}{D_d}
\]
in which D_{max} is a cumulative damage in the unimproved ground, and D_d is an apparent cumulative damage of the improved ground. Apparent cumulative damage D_d should be reduced below D_{max} if the drainage effect is considered. The cumulative damage is calculated by

$$D = \frac{1}{2} \sum_k \left[\frac{1}{(N_l)_k} \right]$$

(2)

in which $(N_l)_k$ is the number of the k-th shear stress pulse within the shear stress history required to cause liquefaction as schematically shown in Figure 3. The cumulative damage D is unit when the soil liquefies. D_{max} is calculated by Eq. (2) using the shear stress history in the unimproved ground that is obtained by an earthquake response analysis.

On the other hand the drainage effect is evaluated by a consolidation analysis. Generation of the excess pore water pressure is assumed to be same with that in the unimproved ground. Under the conditions of purely radial drainage to the gravel piles, the consolidation equation is lead to the following form [1].
\[
\frac{k_h}{\gamma_w m_v} \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} \right) = \frac{\partial u}{\partial t} - \frac{\partial u_g}{\partial t} \frac{\partial N}{\partial N}
\]

(3)
in which \(u\) is the excess pore water pressure; \(k_h\) is a coefficient of permeability; \(\gamma_w\) is the unit weight of water; \(m_v\) is a coefficient of volume compressibility; \(u_g\) is excess pore pressure generated during the \(dN\) loading cycles. For the practical purpose, the irregular cyclic loading is converted to an equivalent number \(N_{eq}\) of uniform stress cycles at a stress ratio \(\tau/\sigma_v^0\) occurred in the duration of \(t_d\). Then,

\[
\frac{\partial N}{\partial t} = \frac{N_{eq}}{t_d}
\]

(4)

Relationships between \(u_g\) and the number of cycles \(N\) is evaluated in the following [1]

\[
\frac{u_g}{\sigma_v^0} = \frac{2}{\pi} \arcsin \left(\frac{N}{N_l} \right)^{1/2\alpha}
\]

(5)
in which \(u_g/\sigma_v^0\) is an excess pore water pressure ratio; \(N_l\) is the number of alternating shear stress cycles required to cause liquefaction under certain stress amplitude. The shape of excess pore water pressure generation curve derived from Eq. (5) is shown in Figure 4. A finite element program LARF (Liquefaction Analysis for Radial Flow) [1] is used to solve Eq. (3). Even if the number of alternating shear stress cycles, \(N\), extends to \(N_l\), \(u_g/\sigma_v^0\) is kept 1.0. In this sense, \(N/N_l\) can be considered to be same with \(D_d\) in Eq. (5). By replacing \(N/N_l\) with \(D_d\) in Eq. (5), the apparent cumulative damage in the unimproved ground yields

\[
D_d = \sin \left(\frac{\pi}{2} \cdot \frac{u_g}{\sigma_v^0} \right)^{2\alpha}
\]

(6)

Finally the element simulations are performed to find the model parameters targeting the liquefaction resistance of the improved ground obtained by the procedure in Fig.1. In addition the effect of rigidity of the gravel pile is examined later, which can become dominant when the excess pore water pressure is high in the unimproved ground.

![Figure 4 Relationships between \(u_g\) and the number of cycles \(N\)](image-url)
A computer program code FLIP (Finite element analysis of Liquefaction Program) [2] is used in this study. The constitutive model is based on a multiple inelastic shear springs defined in the deviator strain space as shown in Figure 5 originally proposed by Towhata [3]. In addition to the conventional assumption of hyperbolic relationship assigned for each shear spring for monotonic initial loading, the model uses the extended Masing rule to reproduce more realistic hysteresis loop for cyclic loading [4, 5 and 6]. The excess pore water pressure generation due to dilatancy is modeled using the concept of liquefaction front, which is defined in the equivalent normalized stress space, shown in Figure 6 [2]. This is based on the results of the laboratory tests by Towhata [7] that there is a unique relationship between the accumulated shear work per unit volume and the excess pore water pressure at each state of shear stress. In Figure 6, the coordinate S is equivalent to a ratio of current over initial confining stresses and the coordinate r is equivalent to deviatoric stress ratio. The normalized excess pore water pressure is given by $1-S$. The liquefaction front specifies the current value of S as a function of the liquefaction front parameter S_0, which is directly specified as a function of normalized plastic shear work while the parameter S, equivalent to the confining stress ratio, is specified by the liquefaction front curve. If the deviatoric stress ratio r becomes larger than m_3, the parameter S will be affected by the effect of positive dilatancy. The main ten parameters used in the constitutive model are shown in Table 1.

![Figure 5 Multiple shear spring model (after Towhata and Ishihara [3])](image1)

![Figure 6 Schematic figure of liquefaction front (after Iai et al. [2])](image2)
Table 1 List of model parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_{ma}</td>
<td>Rebound modulus</td>
</tr>
<tr>
<td>G_{ma}</td>
<td>Shear modulus</td>
</tr>
<tr>
<td>ϕ_l</td>
<td>Shear resistance angle</td>
</tr>
<tr>
<td>h_{max}</td>
<td>Hysteresis damping factor at large shear strain level</td>
</tr>
<tr>
<td>ϕ_p</td>
<td>Phase transformation angle</td>
</tr>
<tr>
<td>w_1</td>
<td>Parameter to control overall e.p.w.p generation</td>
</tr>
<tr>
<td>p_1</td>
<td>Parameter to control initial phase of e.p.w.p generation</td>
</tr>
<tr>
<td>p_2</td>
<td>Parameter to control final phase of e.p.w.p generation</td>
</tr>
<tr>
<td>S_1</td>
<td>Minimum effective confining stress ratio</td>
</tr>
<tr>
<td>c_1</td>
<td>Threshold limit to cause dilatancy</td>
</tr>
</tbody>
</table>

SIMULATION OF LARGE-SCALE MODEL TESTS

Large-scale model tests
The large-scale model tests [8] are simulated. A container made of a stack of 64 aluminum rings is set on the shaking table. Rings are 1.9 meters in diameter, and are stacked to the height of about two meters. The cross sectional geometric configuration is shown in Figure 7. The composite ground is made of two parts; one part is the sand deposit, with relative density of about 30% and the other the gravel drain. The sand was taken at Gaikou district in Akita Port, Japan. Fines were completely washed out for securing the uniformity in permeability. Grain size distributions are shown in Figure 8. Two kinds of crushed stones were used for the gravel drain. No.7 crushed stones were used for the gravel piles. No.5 crushed stones were for the gravel mat of 20 cm thickness above the sand deposit and the gravel drain.

Test series for the numerical simulation are shown in Table 2. The tests were conducted under sinusoidal input motion. Horizontal acceleration, and horizontal displacement, and excess pore water pressure at the point of A13, H13, and P23 shown in Figure 7 are compared with simulation.

![Figure 7 Test apparatus](image)
Figure 8 Grain size distribution of materials

Table 2 Test series for the numerical simulation

<table>
<thead>
<tr>
<th>Test cases</th>
<th>Pile diameter ratio (a / b)</th>
<th>Wave type</th>
<th>Frequency</th>
<th>Duration</th>
<th>Input acceleration</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-502</td>
<td>0.30</td>
<td>Sinusoidal</td>
<td>2Hz</td>
<td>10 sec</td>
<td>49.7 m/s(^2)</td>
</tr>
<tr>
<td>R-702</td>
<td>0.45</td>
<td>Sinusoidal</td>
<td>2Hz</td>
<td>10 sec</td>
<td>51.0 m/s(^2)</td>
</tr>
<tr>
<td>R-703</td>
<td>0.45</td>
<td>Sinusoidal</td>
<td>2Hz</td>
<td>10 sec</td>
<td>81.6 m/s(^2)</td>
</tr>
</tbody>
</table>

Finite element model and model parameters

One dimensional model composed of the sand deposit and the gravel mat is modeled as shown in Figure 9. The fundamental model parameters are shown in Tables 3 and 4. They are decided based on various tests made in reference [8]. The shear modulus and the rebound modulus vary depending on confining stress. Liquefaction resistance by the analysis is compared with the triaxial test result in Figure 10. Unfortunately, the sand used for the triaxial test was not exactly same as the sand used for the shaking tests; the fines less than 5% are included in the sand for the triaxial test. Triaxial compression test results under consolidated drained condition by Ootaka [9] were used to decide the model parameters of gravel.

Figure 9 Finite element mesh

Figure 10 Element simulation test result
Table 3 Model parameters for hyperbolic nonlinear model

<table>
<thead>
<tr>
<th>Materials</th>
<th>ρ_t</th>
<th>n</th>
<th>G_{ma} (kPa)</th>
<th>K_{ma} (kPa)</th>
<th>σ'_{ma} (kPa)</th>
<th>ϕ (deg.)</th>
<th>c (kPa)</th>
<th>h_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>1.76</td>
<td>0.55</td>
<td>11600</td>
<td>30200</td>
<td>6.32</td>
<td>38.2</td>
<td>0.0</td>
<td>0.24</td>
</tr>
<tr>
<td>No.5 gravel</td>
<td>1.42</td>
<td>0.47</td>
<td>1656</td>
<td>4318</td>
<td>0.93</td>
<td>45.4</td>
<td>6.9</td>
<td>0.24</td>
</tr>
<tr>
<td>No.7 gravel</td>
<td>1.89</td>
<td>0.46</td>
<td>4572</td>
<td>11923</td>
<td>7.09</td>
<td>45.4</td>
<td>6.9</td>
<td>0.24</td>
</tr>
</tbody>
</table>

* The value of G_{ma} and K_{ma} are defined at confining pressure σ'_{ma}.

Table 4 Model parameters for excess pore water pressure model

<table>
<thead>
<tr>
<th>Materials</th>
<th>ϕ_p (deg.)</th>
<th>w_1</th>
<th>p_1</th>
<th>p_2</th>
<th>S_1</th>
<th>c_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>28.0</td>
<td>6.5</td>
<td>0.30</td>
<td>0.90</td>
<td>0.005</td>
<td>1.30</td>
</tr>
</tbody>
</table>

The parameters used in the consolidation analysis by LARF are shown in Table 5. The cumulative damage ratios for the test series are shown in Table 6. The simulations targeting the apparent liquefaction resistance are shown in Figures 11, 12 and 13. Only the parameter w_1, which controls the overall excess pore water pressure, was changed to move the simulated liquefaction resistance curve toward the targets.

Table 5 Parameters used for consolidation analysis

<table>
<thead>
<tr>
<th>Materials</th>
<th>k (m/s)</th>
<th>m_v (m2/kN)</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>0.000092</td>
<td>0.00018</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Table 6 Cumulative damage ratios

<table>
<thead>
<tr>
<th>Test cases</th>
<th>Cumulative damage</th>
<th>Cumulative damage ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-502</td>
<td>D_{max}: 0.64, D_d: 0.20</td>
<td>3.1</td>
</tr>
<tr>
<td>R-702</td>
<td>D_{max}: 0.77, D_d: 0.14</td>
<td>5.7</td>
</tr>
<tr>
<td>R-703</td>
<td>D_{max}: 2.50, D_d: 1.00</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Figure 11 Element simulation test result (R-502)
RESULTS AND DISCUSSION

Responses of horizontal acceleration, horizontal displacement, and excess pore water pressure ratio are compared with the test results in Figures 14, 15 and 16. The excess pore water pressure generations are restrained by the drainage effect in the test cases of R-502 and R-702. The responses obtained by the simulation show good agreement with the tests. The horizontal displacements by the tests seem to be unstable. It is possibly caused by behavior of container made of aluminum rings. The simulation gives slightly rapid buildup of the excess pore water pressure at the beginning of the shaking. The reason seems to come from the difference between the sand used for the triaxial test and the sand used for shaking tests.

The sand deposit liquefies at about 7 seconds in the test R703. The generation of the excess pore water pressure is rapid in the analysis as well. In order to examine the effect of the rigidity of the gravel pile, two dimensional analysis was performed. The results are shown in Figure 17. As seen in the excess pore water pressure response the generation of the excess pore water pressure is restrained by considering the gravel stiffness, results in better agreement with the test than previous analysis.
Figure 14 Results of analysis (R-502)

Figure 15 Results of analysis (R-702)

Figure 16 Results of analysis (R-703)
CONCLUSIONS

A method to model the effect of drainage in high permeable ground is proposed to be used in dynamic effective stress analysis by undrained condition. The large-scale model tests were simulated in order to confirm the efficiency of the model. Responses, acceleration, displacement, excess pore water pressure, obtained by the simulation generally show good agreement with the test results. It is indicated that the generation of the excess pore water pressure is also restrained by considering the gravel rigidity in the model.

ACKNOWLEDGEMENT

The results described herein were carried out as a part of activity in The FLIP Research Consortium (Secretariat: Coastal Development Institute of Technology). The support of other members in gravel drain working group is gratefully acknowledged.

REFERENCES

8. Iai S. “Large scale model tests and analysis of gravel drains” Report of the Port and Harbour Research Institute, 1988; 27(3).