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SUMMARY 

 
Masonry infill panels in framed structures have been long known to affect strength, stiffness and ductility 
of the composite structure. In seismic areas, ignoring the composite action is not always on the safe side, 
since the interaction between the panel and the frame under lateral loads dramatically changes the 
stiffness and the dynamic characteristics of the composite structure and hence its response to seismic 
loads. This study presents a simple method of estimating the stiffness and the lateral load capacity of 
concrete masonry-infilled steel frames failing in corner crushing mode, as well as the internal forces in 
the steel frame members. In this method, each masonry panel is replaced by three struts with force-
deformation characteristics based on the orthotropic behaviour of the masonry infill panels. The method 
can be easily computerized and included in non-linear analysis and design of three-dimensional infilled 
frame structures. 
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INTRODUCTION 
 
The current study aims to present a simple method of predicting the stiffness as well as the ultimate load 
capacity of concrete masonry-infilled steel frames (CMISF). The method is easy enough to be included in 
the design or the analysis of such systems using the available resources in typical design offices. The 
technique can be used to produce design aids and to develop a conceptual approach for the analysis and 
design of such composite systems.   
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Based on the knowledge gained from both analytical and experimental studies during the last five 
decades, different failure modes of masonry infilled frames can be categorized into five distinct modes, 
namely: 
 

1. Corner crushing mode (CC mode), represents crushing of the infill in at least one of its loaded 
corners, as shown in Fig. 1-a. This mode is usually associated with infill of weak masonry blocks 
surrounded by a frame with weak joints and strong members. 

2. Sliding shear mode (SS mode), represents horizontal sliding shear failure through bed joints of a 
masonry infill, as shown in Fig. 1-b. This mode is associated with infill of weak mortar joints and 
strong frame. 

3. Diagonal compression mode (DC mode), represents crushing of the infill within its central region, 
as shown in Fig. 1-c. This mode is associated with a relatively slender infill, where failure results 
from out-of-plane buckling instability of the infill. 

4. Diagonal cracking mode (DK mode), in the form of a crack connecting the two loaded corners, as 
shown in Fig. 1-d. This mode is associated with weak frame or frame with weak joints and strong 
members infilled with a rather strong infill. 

5. Frame failure mode (FF mode), in the form of plastic hinges in the columns or the beam-column 
connection, as shown in Fig. 1-e. This mode is also associated with weak frame or frame with 
weak joints and strong members infilled with a rather strong infill. 

 

 
Fig. 1.  Different Failure Modes of Masonry Infilled Frames: 

a) Corner Crushing Mode; b) Sliding Shear Mode; c) Diagonal Compression Mode 
d) Diagonal Cracking Mode; and e) Frame Failure Mode 

 
It is worth mentioning that only the first two modes, the CC and the SS modes, are of practical 
importance (Comite [1]) since the third mode is very rare to occur and requires a high slenderness ratio of 
the infill to result in out-of-plane buckling of the infill under in-plane loading. This is hardly the case 
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when practical panel dimensions are used, and the panel thickness is designed to satisfy the acoustic 
isolation and fire protection requirements. The fourth mode should not be considered a failure mode, due 
to the fact that the wall still carries more load after it cracks. The fifth mode, although might be worth 
considering in the case of reinforced concrete frames, yet when it comes to steel frames infilled with un-
reinforced hollow masonry blocks, this mode hardly occurs. The study conducted herein models the CC 
mode only, which is the most common mode of failure. In order to determine the governing failure mode, 
the capacity of the infill panels obtained by the proposed method should be compared to the capacity 
under SS mode which may be estimated using the method suggested by Paulay and Priestley [2]. 
 
 

DEVELOPMENT OF CMISF MODEL 
 

Subjecting a bare masonry panel to a diagonal loading usually results in a sudden failure initiated by a 
stepped crack along the loaded diagonal, dividing the panel into two separate parts and immediately 
leading to the collapse of the specimen due to lack of confinement (El-Dakhakhni et al. [3]). Unlike the 
unconfined panel, as soon as a diagonal crack develops within an infilled panel (usually at a much lower 
load and deflection levels than ultimate) the panel finds itself confined within the surrounding frame and 
bearing against it over contact lengths, as shown in Fig. 2-a. The contact lengths provide enough 
confinement to prevent failure and allowing the panel to carry more load until the existing diagonal crack 
continues to widen and new cracks appear leading, eventually, to ultimate failure. To model this 
behaviour it is rational to consider the panel to be composed of two diagonal regions, as shown in Fig. 2. 
One region connects the top beam to the leeward column and the other connects the windward column to 
the lower beam. As reported by many researchers, (Reflak and Fajfar [4], Saneinejad and Hobbs [5], 
Mosalam et al. [6], [7], [8] and Buonopane and White [9]), the bending moments and shearing forces in 
the frame members cannot be replicated using a single diagonal strut (although has been used frequently) 
connecting the two loaded corners. Based on the above, it is suggested that, at least two additional off-
diagonal struts located at the points of maximum field moments in the beams and the columns are 
required to reproduce these moments as shown in Fig. 2-b. Furthermore, since the load transfer from the 
frame members to the infill depends on the contact length which, in turn, is affected by the stiffness and 
the deflected shape of the frame members, the use of a multi-strut model will allow for the interaction 
between different panels in multi-story buildings. This is due to the fact that some beams (and/or 
columns) will be loaded from the upper and lower panels (or left and right panels) at different locations 
within the span (or height), which will affect their deflected shape and hence the panel’s strains, and 
consequently changing the failure load. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 2. The Infill Panels Behaviour: a) Separation into Two Diagonal Regions; and b) Resulting Bending 
Moment Diagrams for a Different Bays in Multi-Story Infilled Frame Building 
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Steel frame model 
The steel frame members were modeled elastic beam elements connected by non-linear rotational spring 
elements at the beam-column joints. The concentration of non-linearity in the frame joints only is based 
on the fact that due to the limited infill ductility and thus limited frame deformation at the peak load 
except at the loaded corners, the maximum field moments as well as the bending moments at the unloaded 
joints are lower than that at the loaded joints and has been found to be, at most, 20% of the plastic 
moment capacity of the section (Saneinejad and Hobbs [5]).  
Using elastic frame elements requires the area and the moment of inertia of the member section as well as 
Young’s modulus of the steel to be the only required input properties for the frame sections to form the 
stiffness matrix; this eliminates the need to modify the stiffness matrix as well as the iteration process to 
account for the non-linear behaviour of the steel frame. The use of elastic elements is justified based on 
the earlier discussion on the steel frame geometrical model. 
The ultimate moment capacity of the non-linear rotational spring, representing the beam-column joint, is 
defined as the minimum of the column’s, the beam’s or the connection’s ultimate capacity, Mpj , which 
will be referred to as the plastic moment capacity of the joint. The rotational stiffness of the spring can be 
calibrated so that the lateral stiffness of the frame model matches that of the actual bare frame, which can 
be obtained experimentally or using simple elastic analysis or, in case of semi-rigidly connected 
members, using available data on modeling semi-rigid connections (Chen and Lui [10]). The joint 
behaviour is shown in Fig. 3-a, where, φel   is the maximum elastic rotation that the joint can undergo 
without yielding; φpl is the maximum plastic rotation before the joint undergoes moment reduction below 
Mpj; and φult is the maximum plastic rotation beyond which the joint cannot sustain any moment. 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3.  Proposed Infilled Frame Components Behaviour: a) The Beam-Column Connection: b) Simplified 

Tri-Linear Stress-Strain Relation of the Concrete Masonry; and c) Typical Force-Deformation Relation 
for Struts 

 
 
Infill pane model 
El-Dakhakhni et al. [3] showed that for steel frame members infilled with masonry panel, the points of 
maximum field moment developed within the frame members lie approximately at the end of the contact 
lengths, and are located at distances from the beam-column connection given by  
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where, αc is the ratio of the column contact length to the height of the column and αb  is the ratio of the 
beam contact length to the span of the beam;  h  is the column height and  l is the beam span. Mpj is the 
minimum of the column’s, the beam’s or the connection’s plastic moment capacity, referred to as the 
plastic moment capacity of the joint; Mpc and Mpb are the column and the beam plastic moment capacities 
respectively; f m-0 and f m-90 are the compressive strength of the masonry panel parallel and normal to the 
bed joint respectively; and finally t is the wall thickness. 
Assuming that the equivalent uniformly loaded diagonal region of the panel to be of area equal to A, 
where A is to be given later, hence each region of the panel shown in Fig. 2-a will be of area =A/2. 
Furthermore, assuming uniform contact stress distribution along the contact areas, each region will be 
replaced by two struts, each of area A1=1/2x(A/2)=A/4, located at the beginning and the end of the contact 
length. Combining the two struts connecting the loaded corners, from the two regions, into one strut of 
area A2 =2xA1= A/2 results in representing the whole panel by three struts, an upper strut connecting the 
upper beam with the leeward column with area A1=A/4, a middle strut connecting the two loaded corners 
with area A2=A/2, and finally a lower strut of area A1=A/4 connecting the windward column with the 
lower beam, where A=2A1+A2. The proposed model for a typical CMISF is shown in Fig.4. 
 

Fig. 4. The Proposed CMISF Model 
 
El-Dakhakhni et al. [3] suggested that the total diagonal struts area, A, is to be calculated by  
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Due to the fact that the panel behaves as if it was diagonally loaded, constitutive relations of orthotropic 
plates (Shames and Cozzarelli [11]) and axes transformation matrix, are used to obtain the Young’s 
modulus, Eθ, of the panel in the diagonal direction using the following equation 
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where, E0 and E90 are Young’s moduli in the direction parallel and normal to the bed joints respectively; 
ν0-90 is Poisson’s Ratio defined as the ratio of the strain in the direction normal to the bed joints due to the 
strain in the direction parallel to the bed joints; and G is the shear modulus.  

It was also suggested by El-Dakhakhni et al. [3] that, not only Young’s modulus will change, but also the 
ultimate strength of the masonry wall in the θ  direction, f m-θ . To account for this direction variation, and 
to relate Eθ to f m-θ  by the same factor relating E90 to f m-90 , i.e. 
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Based on non-linear FE analyses, Saneinejad and Hobbs [5] suggested that the secant stiffness of the 
infilled frames at the peak load to be half the initial stiffness. This might be directly interpreted into the 
stress strain relation for the masonry panel by assuming that the secant Young’s modulus at peak load, Ep, 
is equal to half the initial Young’s modulus, Eθ , i.e.  Ep= 0.5 Eθ . As shown in Fig. 3-b, knowing Ep  and fθ 

it is now an easy task to determine the strain corresponding to the peak load εp. Instead of using the 
parabolic stress-strain relation shown in Fig. 3-b, it is suggested to approximate it into a tri-linear relation 
that is simpler and more practical for analysis as shown by the thick lines in the same figure. Unless more 
accurate data are available, the parameters in Fig. 3-b will be assumed according to the following 

 

ε1 = εp - 0.001    (6-a)  

    

ε2 =εp + 0.001   (6-b)  

    

εu = 0.01  (6-c) 

    

Knowing the stress strain relation along with the area (from equation 3) and the length of each of the three 
struts (which can be easily calculated knowing the panel dimensions and the contact lengths given by 
equations 1 and 2) makes it possible to obtain a force-deformation relation for each strut. As shown in 
Fig. 3-c, by simply multiplying the strains ε1, ε2 and εu by the length of each strut resulting in obtaining δ1, 
δ2 and δu respectively. Also multiplying the stress, f m-θ , by the area of each strut results in obtaining Fu 
for each strut. In fact assuming that Eθ  and f m-θ are the same for all struts and neglecting the minor 
difference in the inclination angle between the middle strut and both the upper and the lower strut, will 
result in finding only two distinct force-deformation relations, one for the upper and lower struts and 
another for the middle strut. 
 
 
 



MODEL VERIFICATION 
 

The suggested method was used to model five CMISF specimens. Four of the specimens were tested at 
the University of New Brunswick under monotonic racking load by Yong [12], McBride [13], Amos [14], 
and Richardson [15]. The Fifth specimen was tested in Cornell University by Mosalam et al. [6] under 
quasi-static displacement controlled loading. The first four specimens are identical single panel CMISF 
with different masonry strength. The load-deflection relation of the model for specimen WB2 tested by 
Yong [12], utilizing the proposed technique is shown in Fig. 5-a along with test results for comparison. 
The figure shows the capabilities of the proposed method to predict both the stiffness and ultimate load 
capacity up to failure. The model appears to overestimate the ultimate capacity by about 9% and 
acceptably estimates the average stiffness up to failure. The load-deflection relations for specimen WA3 
(McBride [13]), and specimen WC7 (Amos [14]) are shown in Figs. 5-b and 5-c respectively. In which 
the model closely approximate the stiffness of the CMISF up to failure and overestimate the strength of 
specimen WA3 by 14 %, and underestimate that of specimen WC7 by 3%. The fourth specimen WD7, 
tested by Richardson [15], was loaded up to 60 mm. The load-deflection relations for the bare and the 
infilled frame model are shown in Fig. 5-d along with test results for comparison. Again the proposed 
model is efficient in duplicating the test results up to failure. The model underestimated the failure load 
by 10% and the experimental test data show that the infilled frame gradually degrades and eventually at 
some point it will reach the ultimate capacity of the bare frame.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. Load-Deflection Relations for Specimens: a) WB2 (Yong [12]); b) WA3 (McBride [13]); 

c) Specimen WC7 (Amos [14]); and d) Specimen WD7 (Richardson [15]) 

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

0 1 0 2 0 3 0 4 0 5 0 6 0

D e fle c tio n  (m m )

L
o

ad
 (

kN
)

P
∆

In f i l le d  
F ra m e  
M o d e l

B a r e  
F ra m e

T e s t 
R e s u lts

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

0 1 0 2 0 3 0 4 0 5 0 6 0

D e f le c tio n  (m m )

L
o

ad
 (

kN
)

P
∆

I n fi l le d  
F ra m e  
M o d e l

B a re  
F ra m e

T e s t  
R e s u lt s

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

4 5 0

5 0 0

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0

D e f le c t io n  (m m )

L
o

ad
 (

kN
)

P
∆

In f i l le d  
F ra m e  
M o d e l

B a r e  
F ra m e

T e s t  
R e s u lts

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0

D e f le c t i o n  ( m m )

L
o

ad
 (

kN
)

In f il le d  
F r a m e  
M o d e l

B a r e  
F r a m e

T e s t 
R e s u l t s

P
∆

                          (a)                     (b) 

                     (c)                          (d) 



Specimen Q21SSB, tested by Mosalam et al. [6] was modeled using the same technique; Fig. 6-a shows 
the load-deflection relation of the bare frame model and the infilled frame model along with the envelope 
of the cycling loading test. The model accurately represents the infilled frame up to a deflection of 6 mm, 
at which the model underestimated the specimen capacity by less than 2%. After this displacement, 
failure occurred in the specimen yet the model continued to carry more load, but with a very low stiffness, 
then it gradually loses its strength and fails. Fig. 6-b shows the bending moments in the model members 
at a load of 41.5 kN, before failure. These moments have the same trend as those obtained by Mosalam et 
al. [7] and suggested by Reflak and Fajfar [4], Saneinejad and Hobbs [5], and Buonopane and White [9]. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 6. Model Prediction of Specimen Q21SSB (Mosalam et al. [6]) Behaviour: a) Load-Deflection 
Relation; and b) Bending Moment Diagram (drawn on the tension side) 

 

 

 

CONCLUSIONS 
 

This paper presents an analytical method of predicting the stiffness and the ultimate load capacity of 
concrete masonry infilled steel frames (CMISF) failing in corner crushing mode. Based on the present 
study, the following conclusions can be inferred: 
 

1. The proposed analytical technique predicts the lateral stiffness up to failure, and the ultimate load 
capacity of CMISF to an acceptable degree of accuracy. The technique accounts for the nonlinear 
behaviour that occurs in both the steel frame (due to formation of plastic hinges) and in the 
masonry panel (due to crushing). The technique considers the diagonal tension cracking in the 
masonry joints merely as a serviceability limit state. 

2. The use of three struts instead of a single one is justified based on the observed bending moments 
in the frame members, which cannot be generated using a single strut. Furthermore, the three 
struts do not fail simultaneously, which is the case in actual infill panels, since the crushing starts 
at the corners and keeps propagating in the corner region leading to failure of the panel. The use 
of the three struts will also facilitate modeling the interaction among the different panels in multi-
story buildings. 
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3. Instead of using the actual nonlinear stress-strain relation, an option, which might not be available 
in structural analysis software, a simplified tri-linear stress-strain relation is employed for the 
masonry. A similar relation is also used in modeling the steel frame load-deformation relation. It 
is worth mentioning that this simplification results in a less solution time, specially, in multi-story 
3-D structures with large number of DOF. For linear elastic analysis purposes, a simpler way is to 
utilize the first part only of the tri-linear relation in order to obtain the stiffness and the ultimate 
load. 
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