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ABSTRACT

A stochastic model is proposed to predict the lifetime of existing multi-story buildings in seismically active
regions. Variability in earthquakes is described as that which fluctuates with both short-term and long-term.
The damage state prediction (DSP) model is introduced to quantify multiple levels of damage state in terms of
the stiffness degradation or strength deterioration of structural system. The DSP model is based on the Iwan's
distributed element model and capable of predicting permanent system damage in terms of the acceptable
maximum or cumulative ductility ratio of each element. For different earthquake intensities, conditional
damage transition probability (CDTP) matrices are constructed by Monte Carlo simulation using the DSP
model. Then an overall damage transition probability (ODTP) matrix is constructed by multiplying the element
of each CDTP matrix by the corresponding earthquake occurrence rate and integrating the result with respect to
all possible earthquake intensities. The ODTP matrix is used to predict the future damage state of structural
system in the Markov chain model. For illustration, the damage evolution of multi-story steel and reinforced
concrete buildings is presented for different soil conditions.
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INTRODUCTION

To predict the lifetime of multi-story buildings located in the seismic regions, it is useful to construct a
mathematical model which can deal with the evolution of structural damage in time and the time to reach a
prescribed level of damage. However, there are many uncertainties and randomnesses in the modeling of
earthquake excitation, dynamic characteristics of structural system, nonlinear response analysis and also in the
description of damage state. Under these uncertain circumstances, a stochastic model can provide the
theoretical basis for dealing with uncertainties explicitly and synthesize different sources of uncertainty
systematically.

Subjected to strong ground motion, structures are often likely to undergo response in the inelastic range and
the stiffness and strength of structural system occasionally degrade or deteriorate particularly at significant



level of damage. A number of models have been proposed for investigating nonlinear response, ranging from
a simple bilinear model to more sophisticated hysteretic models. In the stochastic response analysis, one of the
most frequently used hysteretic models is a differential equation model which is mathematically motivated
(Wen,1976). Another popular hysteretic model is a distributed element (DE) model which is physically
motivated (Iwan,1966). The original DE model was only composed of a series of bilinear element. The DE
model has been improved to reproduce the deteriorating behavior of structural system by adding a series of
slip element (Iwan,1973) or by cutting the bilinear element one by one if the element reaches a specified level
of plastic deformation (Iwan and Cifuentes,1986).

To quantify the seismic damage of existing structures, it is necessary to select a pertinent measure indicating
the structural damage state as a nonlinear response process. Structural damage has been described in terms of
ductility factor and hysteretic energy for reinforced concrete buildings (Banon and Veneziano,1982; Park and
Ang,1985), whereas cumulative ductility factor or hysteretic energy for steel buildings (Kato and Akiyama,
1982) at the system level.

This paper introduces a damage state prediction (DSP) model which is based on the Iwan's distributed element
model and capable of reproducing the system deterioration in terms of the yielding and failure of each element.
Multiple levels of damage state are described by the stiffness and strength deterioration of the system. For a
prescribed earthquake intensity, a conditional damage transition probability (CDTP) matrix is constructed by a
series of nonlinear response analyses using the DSP model. To construct an overall damage transition
probability (ODTP) matrix, the element of the CDTP matrix is multiplied by the occurrence rate associated
with the earthquake intensity and the result is integrated with respect to all possible earthquake intensities. The
ODTP matrix is used to predict the future damage state in the Markov chain model (Bogdanoff and
Kozin,1985). To illustrate the applicability of this method, the damage evolution of multi-story steel and
reinforced concrete buildings is presented for different soil conditions.
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for first passage failure at the element level) or if the cumulative plastic displacement becomes larger than ¥Xyi

(7 is the acceptable cumulative ductility ratio for cumulative damage at the element level), the i-th pair of
elements breaks and the contribution of the pair to the total restoring force becomes zero. The slip element in

the i-th pair is set to have a spring constant aki (¢ is the stiffness ratio which represents the contribution of

slip element). The DSP model accounts for the progressive loss of stiffness and strength of structural system
at large amplitude of oscillation. Each pair of elements is arranged so that Xy1 < Xy2 <« ¢ « < Xyn. Since each

pair of elements breaks when the maximum displacement exceeds the value BXyi or the cumulative plastic

displacement exceeds the value yXyi, they will break in ascending order. Each pair of elements is completely
defined in terms of two parameters, ki and Xyi. Since there are N pairs of elements, there will be 2N
parameters. It is assumed that the yielding force is constant for all pairs of elements. This reduces the number
of parameters from 2N to N+1. The initial stiffness, Ko, of structural system can be related to the parameters
of the DSP model by the relationship

N
Ky=k,+Y (1+a)k
i=1 , 1
in which ke is the stiffness of a linear spring. The ultimate strength, Fu, of the DSP model can be expressed as

N
F =kX,+ 2(1 +a)f, -
i=]

in which fyi is the yielding force of the i-th pair. Thus, the initial stiffness and ultimate strength of a DSP
model may be expressed by the contribution of N pairs of elements and a linear spring element.

Figure 2 shows the hysteretic behaviors of the DSP model, which are compared with published experimental
results on steel and RC frames (Wakabayahi,1981). It can be seen that the DSP model is capable of reasonably
reproducing the hysteretic and deteriorating behavior of both steel and RC frames.

DESCRIPTION OF EARTHQUAKES

The future nature of the earthquake ground motion expected at a particular site is unpredictable in the
deterministic sense and realistically represented by a stochastic point of view. According to the time scale of
fluctuation, the variability of earthquake force may be described as that which fluctuates with short-term and
long-term. The long-term variation may be approximately described by a pulse process characterized by
random occurrence. A seismic hazard curve is used to calculate the occurrence rates of all relevant earthquake
intensities over a specified time period. The short-term variation, on the other hand, may be described by a
continuous random process. A ground motion model is constructed as a quasi-nonstationary random process
which is characterized by a stationary power spectral density function and a deterministic envelope function.
Sample ground motions are generated with all possible earthquake intensities and used as the inputs to
structural system.

A seismic hazard curve is described through a plot of annual exceedance probability versus peak ground
acceleration, Ap. The hazard curve of the type II extreme value distribution is given by

P[AP > a] =1- exp[—(u/ a)k] 3)
in which 4 and k are the size and shape parameters of the distribution, respectively. The peak ground
acceleration corresponding to a T year return period can be obtained from the following equation :

1
A =1-——
P[ P<a] T(a). )

The method used for artificial ground motion generation is the superposition of sinusoids having random
phase angles and amplitudes devised from a stationary power spectral density function. The Kanai-Tajimi
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power spectral density function of ground acceleration is given by
1+4h(w/w, )
G((D)= Go . 782( 8) -
[l—(w/cog) ] +4hg'(w/(og) (O<w<°o), )

in which wg is the predominant circular frequency, hg is the damping ratio and Go is the spectral intensity

which is a measure of earthquake intensity. The relationship between spectral intensity, Go, and peak ground
acceleration, Ap, may be obtained as
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in which Z is the peak factor which is assumed here to be 3.0. The transient character of earthquake is
described by the Jennings-type envelope function as

(t/tl)z D 0srst
g=41 t <t<t
} t1>t 2
expy—c(t—t_) 2
{ 2 2 , ¥

in which £,-#, is the duration of stationary part and c is the decay coefficient.

SHORT-TERM PREDICTION

The range of damage state is divided into N discrete damage levels corresponding to the number of broken
pairs of elements in the DSP model. A two-dimensional Markov matrix which is referred to as a conditional
damage transition probability (CDTP) matrix is constructed. Each column and each row in the matrix contains
transition probabilities, e.g. , element Pijis the probability that the post-earthquake damage level Dpos: is level
J» given that the pre-earthquake damage level Dpre is level i, or

£=r(Dn=DJ5,. =) ®
The elements in the matrix may be calculated by Monte Carlo simulation. For each earthquake intensity level,
sample ground motions are generated and used as the inputs to structural system. Using a DSP model, a series
of nonlinear response analyses are carried out to find the post-earthquake damage state for each response time
history. To construct a CDTP matrix, the pre-earthquake damage state is varied from level 1 to N. Depending
on earthquake intensity, the stiffness and strength of structural system deteriorate during earthquakes. The
damage level gradually evolves in time from the pre-earthquake damage state to the post-earthquake damage
state. Since structural damage is an irreversible process, the resulting CDTP matrix becomes a triangular
matrix.

LONG-TERM PREDICTION

The CDTP matrix is conditional on a specific level of earthquake intensity. To construct a ODTP matrix,
which is an overall damage transition matrix and independent of earthquake intensity, the element Pijin the
CDTP matrix is multiplied by the occurrence rate associated with the earthquake intensity level and then the
result is integrated with respect to all possible earthquake intensities. Assuming that the occurrence of
earthquake follows the Poisson process, the probability of damage state after t years is given by

hind K(Vt)K
- @] =L exp(-
(Po}= Z{POII L -ern-ve) ®

in which {P(0)} is the initial damage state vector (N X 1), {P(#)} is the t-year future damage state vector (N X
1), [@] is the ODTP matrix (N XN) whose element ®i; gives the probability of being in damage level j having
started in damage level i, vis the mean occurrence rate of earthquake and X is the number of occurrence.

NUMERICAL EXAMPLES

To illustrate the proposed method, the seismic damage evolution of five-story steel and four-story reinforced
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Fig.3 Typical plans of example buildings
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Fig.5 Damage evolution of steel and RC buildings for different site conditions
function are as follows: ag=15.7 Table1 Earthquake levels and occurrence rates
rad/sec and hg=0.6 for firm soil —

. Earthq. Range of Median of Go(m’/sec?) Occurrence
condition, .a)g—7.8'5'rad/sec and hg=0.8 level Ap Ap X107 rate
for soft sm! condition. The parameters (m/sec?) (m/sec?) firm soft
in the Jennings envelope function are 1 ~0.961 0.624 0.86 1.58 0.800
fixed to be n=1.5sec, r-t1=7.0sec, 2 ~1.208 1.059 248 454 0.100
¢=0.18 and the total duration is 20sec 3 ~1.507 1.325 3.89 7.11 0.050
for all earthquake intensities. 50 4 ~2.001 1.683 6.28 14.47 0.030
sample ground motions are generated 5 ~2.477 2.187 10.60 19.37 0.010
for each earthquake intensity. The 6 ~3.063 2.706 16.23 29.65 0.005
model parameters of the steel building 7 ~4.055 3417 25.87 47.29 0.003
are as follows: the stiffness of a linear 8§  ~501 4427 4343 7937 0.001

9 ~8.031 6.194 85.01 1553.7 0.001

element; ke=7.06X102 N/mm, the
yielding displacement for each pair of
elements; Xy1= 9 mm, Xy2= 17 mm, Xy3=25mm, © + -, Xy20= 170 mm, the yielding force for each pair of
elements; fy= 6.9 X103 N(constant), the stiffness ratio; @=0.01, the acceptable cumulative ductility ratio; y
=40.0, the total mass of structural system; Ms=7.0X 10kg, and the damping ratio; #=0.02. The model



parameters of the RC building are as follows: the stiffness of a linear element; ke=32.34X102 N/mm, the
yielding displacement for each pair of elements; Xy1= 3 mm, Xy2= 6 mm, Xy3=9mm, - + -+, Xy20= 60

mm, the yielding force for each pair of elements; JSy=5.6X103 N(constant), the stiffness ratio; a=1.0, the

acceptable maximum ductility ratio; f=2.0, the total mass of structural system; Ms=29.4X103kg, and the
damping ratio; 4=0.05. The number of damage levels is set to be 21 for both models.

Figure 4 shows the change in stiffness of the completed steel and RC buildings resting on firm and soft soil
for 50 simulated ground motions of earthquake intensity level 8. The vertical axis is the ratio of the instant
stiffness (k) to the pre-earthquake one (kb), whereas the horizontal axis is the earthquake duration. The change
in stiffness and its variability of the steel building is relatively small, while those of the RC building is
considerably large.

Figure 5 shows the evolution of damage state of the steel and RC buildings for different soil conditions. The
vertical axis is the probability of being in the corresponding damage state after ¢ years. The damage state is
defined in terms of the ratio of the number of broken pairs of elements to the total number of pairs of elements.
0.0 is the undamaged state, whereas 1.0 corresponds to the totally damaged state. The probability of
undamaged state gradually decreases in time and that of damage states slightly increases for the steel building.
On the other hand, the probability of undamaged state rapidly decreases in time and that of damaged states
becomes relatively large for the RC building. The evolution of damage is almost the same irrespective of soil
condition for the steel building, while it is heavily dependent on soil condition for the RC building.

CONCLUSIONS

A stochastic model has been developed for predicting the future damage state of existing buildings in the
seismic regions. The proposed model is capable of dealing with multiple levels of damage state and evolution
of the damage in time in terms of stiffness degradation or strength deterioration. Based on the numerical
results, it is concluded that the stochastic model is a useful and powerful tool to predict the lifetime of existing
buildings for different soil conditions. In addition, it is proved that a DSP model can reasonably reproduce the
nonlinear degrading dynamic behavior of both multi-story steel and reinforced concrete buildings during
earthquakes by specifying the acceptable maximum or cumulative ductility ratio at the element level.
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