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ABSTRACT

Base isolation is a design strategy used to protect facilities from seismic shaking. Adequate methods of
predicting, at the design stage, the properties of layered elastomeric isolation bearings under compression and
shear loads are still under development. No methods were available for predicting the stresses in the internal
steel shims of bearings configured with central holes prior to the work presented in his paper.

Sophisticated, nonlinear, finite element analysis (FEA) techniques are described by which individual isolators
are modeled. Direct shear tests were conducted on samples of the rubber, and various constitutive elastomeric
models are investigated. A three parameter model introduced by Yeoh was implemented into the finite element
analyses. The models included nonlinear material, geometry and boundary effects.

Direct compression and direct compression plus shear were applied to the finite element models. The internal
stresses determined in the steel shims under both compression and compression plus shear are presented.
Various geometry configurations were investigated including various central hole diameters. When comparing
bearings with central holes, a solid configuration and a bearing with a central hole filled with rubber were
included along with four different hole diameters.

As a result of this investigation, the mechanics of the behavior of multilayered elastomer and steel isolation
bearings subjected to large shear strains are better understood. An improved design curve for bearings with

central holes is provided. Currently available, simplified, closed form equations for predicting bearing
mechanics are validated.
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BACKGROUND

Some accepted design equations are subjected to a critical comparison with the FEA predictions. The
strengths and shortcomings of the equations may then be exposed. FEA is particularly useful for problems
involving complicated geometry and is used to investigate the effects resulting from the presence of a central
hole, both empty or plugged with rubber (Billings, 1992). Circular bearings will be considered here, since
this geometry not only leads to simpler formulae but is also customary for seismic isolation bearings.

Shear stiffness
The shear stiffness, K, of an elastomeric bearing of » layers is given by

G4
nh
where G is the shear modulus of the rubber and 4 is the pad area, nrg* where 7y is the bearing radius. The

effect of vertical load on Kj is neglected (Muhr, 1993). Similarly, for a rubber which is linear in stress-strain
behavior, K is considered to be independent of the shear deflection.

K, = (1)

Compression stiffness

The compressive stiffness of a single rubber layer may be expressed as (Gent and Meinecke, 1970),

6G S’ A
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where S is a dimensionless quantity often called the "shape factor".
r
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Small strain elastic theory has been used to calculate the compression stiffness. Since the bulk modulus, X,
of rubber is about 2000 MPa, much greater than the shear modulus, G, (typically in the range 0.3 to 3.0 MPa)
the original derivations assumed incompressibility (Gent and Meinecke, 1970). Chalhoub and Kelly, (1986),
have included the effect of a finite value of K. Equation (2) may be expanded as
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Effect of a Central Hole

Many bearing manufacturers use a steel pin through the central axis of the bearing during the molding and
vulcanization process. The pin restrains the reinforcing plates from moving laterally, and conducts heat to
the core of the bearing. After molding, the central hole is usually filled with rubber but may just be sealed at
each end with a rubber plug (Muhr, 1993). In the case of a central hole of radius 7 in a bearing of radius g,
Constantinou, et al., (1992) give an equation for compression stiffness:



k. = P F %)
where
A= ”(rsz - rhz) (N
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and F is a slowly increasing function of rg/rp, rising from the limiting value of 2/3 at r¢/rj; = 1 to 0.80 at
rs/ri = 100 as shown in Fig. 2.
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Compression Stiffness

Neglecting compliance of the reinforcing plates and any effect of shear, the compression stiffness of a
bearing can be derived from equation (2) by considering » pads to be deformed in series (Thomas, 1983)

1
Kc = _kc (9)
n

FINITE ELEMENT MODELING

The equations given in the previous section are strictly applicable only to small strains. Analytical solutions
using large strain theory would give much more complicated expressions. One solution to improving the
understanding of the behavior of rubber-steel layered isolators utilizes finite elements. Since elastomeric
bearings experience large deformations and the elastomer behaves nonlinearly, the finite element
formulation must include geometric and material nonlinearities. In some applications, the elastomer may
deform far enough to contact the base plates and the code must allow for such nonlinear boundary
conditions.

MARC Analysis Research Corporation's general purpose, nonlinear, finite element code which is designed
specifically for nonlinear applications and includes provision for three-dimensional contact and for modeling
materials such as elastomers was used in the investigation reported.

Strain-Energy Function

The rubber is represented in the code using a strain energy function W(/J,, L, I,) where [,, I,, and I, are the
strain invariants. If the rubber is assumed incompressible, then # is a function only of /, and /,. For many
filled rubbers, 6W/41, is much smaller than 0W/0l,, and may be neglected (Yeoh, 1990). The function then
becomes, to third order:



W= Co(l;-3) + Co(l;-3) + Cu(I,-3) (10)

where the constants C,,, C,,, and C,, are coefficients requiring specification in the MARC code.

The MARC code assumes near-incompressibility of the rubber, and makes use of the following expression
for calculation of the bulk modulus, K (Konter, 1993). X is set by default to,

K= (Cw+ Co)x 10 (11)

where C,, is the coefficient of (Z, - 3), set to zero in equation 10.

Simple Shear Test

The stress-strain relation in simple shear was given by Rivlin, (1948) as,
- 2(6_W + G_W) (12)
4 o1 oI,

where 1 is the shear stress and y is the shear strain which is related to the invariant I, by ¥ = (I, - 3). From
equations (12) and (10), the stress-strain relation in simple shear may be derived in the form of a quadratic
equation in (/; - 3) (Treloar, 1975),

I 2C1 + 4Cn(1,-3) + 6C30(11‘3)2 (13)
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Simple shear test data (Ahmadi, 1991) for the soft, high damping elastomer compound used in the bearings
analyzed was plotted as G = t/y against (/, - 3) = y>. From this curve, a second order equation was fitted
using regression analysis. The first few points of the curve had to be neglected to fit the curve with
reasonable accuracy. Therefore, the behavior of the elastomer at low strains, especially the high initial
stiffness observed in the test corresponding to relatively large G values, is not represented accurately by this
model. However, the stiffening effect at large strains is satisfactorily represented. The regression analysis
yielded the following constants:

Cpo= 02031 Mpa C,=-0.0132Mpa C,, = 0.0018 MPa

Bearings

The bearings chosen in this analysis were of a type manufactured by Malaysian Rubber Producers’ Research
Association (MRPRA) for use in research at the Earthquake Engineering Research Center, University of
California at Berkeley (Aiken, et al., 1992). The bearings analyzed using the finite element technique had
top and bottom metal plates 140 mm in diameter with 4.5 mm thick side cover rubber. There were 12 layers
of elastomer of 3.9 mm thick each between the steel shims of 1.56 mm thickness. The steel end plates were
20.2 mm thick and 140 mm diameter. The cover rubber continued up the sides of the end plates. The total
height was 104.36 mm. The overall diameter including cover rubber of the basic bearing design was
149 mm and the shape factor was 8.97. FEA was also carried out for bearings modeled on the same design,
but with the variations given in Table 1.



Table 1. FEA investigations.
The bearings were first compressed then
sheared under their respective compressive

Model Compression .
(MPa) pressure until convergence could no lgnger be
achieved. A pressure load was applied over
Solid 32t0255 the shim area, followed by point loads on the
6 m hole 51 nodes over the shim area causing shear in the

y-direction. The base plate was fixed and x-
12 mm hole 5.1 direction displacement constraints were placed
on the plane of symmetry defined by x =0. A
typical model consisted of 7472 elements and
24 mm hole 51 8844 nodes for both thick and thin shimmed
bearings as shown in Fig. 1.

12 mm hole filled with elastomer 5.1

48 mm hole 5.1

The cover rubber contacted but did not bond
to the connections on either end of the
bearing. To model this, the 3D CONTACT
option in MARC was used where the bearing
was treated as a deformable body fixed to a
rigid surface simulating the foundation at its
base. To simulate the building frame above
the isolator, a thick, stiff, beam was added to
the top of the bearing. The nodes on the
beam's top surface were all tied to the beam's
top center node in the vertical direction with
the TYING option to simulate a bolted
connection. Consequently, the top of the
beam was free to translate in the y and z
directions, but constrained from rotating. A
crack was left between the top end of the
cover rubber and the bottom of the stiff bean.
The 3D CONTACT algorithm detected
deformable body to deformable body contact
in this region.

Fig. 1. Solid bearing finite element geometry. Each rubber layer had four elements through
its thickness and each steel shim had one
element through its thickness. The cover

rubber had three elements in plan through its thickness. The "assumed strain formulation" option in MARC
was invoked for the elements representing the steel shims; the assumption made is that the strain field
conformed to that of simple beam theory. This improved the shim bending behavior and allowed use of only
one element through the shim thickness to model bending. The steel shims were modeled using a bilinear
model with elastic modulus, £ = 210,000 MPa, Poisson's ratio, v=0.29, and yield stress, oy = 325 MPa.
The strain hardening slope was 10,500 MPa. A full Newton-Raphson solution technique was invoked with
residual load correction and convergence tolerance on the residuals set to 0.10.

The compressive load was typically applied in 24.5 kN increments. The problem converged readily in
compression. Attaining convergence under shear loading was more difficult. The CONTACT option, which
modeled the cover rubber to top beam and to foundation surfaces, complicated convergence. The best
technique found was to apply steps of approximately 100 N total shear load across the top plate for as many
increments as convergence allowed. The computer analysis usually stopped when rubber nodes separated
from the rigid or deformable surface. The job was restarted with an automatic stepping procedure to get



Table 2. Stiffnesses of bearings. G = 0.4061 MPa and K =2030.5 MPa.

Secant Stiffnesses (kN/mm) under 5.1 MPa Compression

K.FEA K, calculated K, FEA K, calculated
Solid 63.96 64.8 0.101 0.128
6 mm Hole 59.33 46.0 0.102 0.128
12 mm Hole 48.86 40.6 0.100 0.128
12 mm Filled Hole 63.84 64.8 0.102 0.128
24 mm Hole 35.77 32.1 0.093 0.125
48 mm Hole 20.73 18.5 0.066 0.115

through the nodal separation detected by the CONTACT algorithm. Typically, 45 increments were
successfully achieved shearing the Solid bearing to approximately 160% shear strain. There was usually
only one to three recycles per increment.

Stiffness Comparison

Values used in calculating the Table 2 stiffnesses were A =mn[(rg+ Arg)* - rp’], G=0.4061 MPa and
K =2030.5 Mpa where Arg is the change in radius due to the cover rubber.

Comparisons of K values for the Solid bearing with and without cover rubber (Billings, 1992) reveals that

use of n(rs + Arg)?) improves the accuracy of the stiffness calculations as compared to omitting the cover
rubber altogether. However, it overestimates the stiffening effect of the side cover layer. This correction
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Fig. 2. Factor, F, for bearings with central holes.

term has been wused throughout the
calculations, as was the effect of bulk
compliance given by equation (4). The same
factors for side cover layer and bulk
compliance were also used to determine the
apparent values of F given in Fig. 2. This
Figure was derived from comparison of the
FEA stiffness for bearings with a central hole
to that of the Solid bearing with the cover
removed (Billings, 1992). The discrepancy
between FEA results for F and equation (8) is
substantial, especially at high values of r¢/rp
(i.e. small holes). This discrepancy is greater
than can be attributed to the approach used to
calculate the cover rubber’s influence.

Table 2 gives the FEA secant stiffnesses for
shear deflection of the various bearings. The
discrepancy between FEA and calculated
values of Ky for the Solid bearing is
surprisingly large in view of the good



agreement for K. In Table 2, the calculation of
K for bearings with holes is based on that for the

Solid bearing, but uses 4 = n((rs + Arg)* - r3d)
rather than n(rg + Arg)’. This allows the cover

Table 3. Stresses under Compression.

5.1 Mpa Compression

G, (MPa) FEA rubber and central hole to be accounted for in the

: equations. This was necessary because there is no

Solid 28.88 simple equation for the case of bearings with a

6 mm Hole 2922 central hole. This simple adjustment, assuming

proportionality of K¢ with the area of rubber, gives

12 mm Hole 24.85 a guide as to the effect of the hole on the shear

. stiffness. It is apparent that for the 48 mm Hole

12 mm Filled Hole 44.88 bearing, the shear stiffness is significantly less
24 mm Hole 23.84 than expected on the basis of the area of rubber.

48 mmHole 22.30

Stress Comparison

A comparison of the maximum Von-Mises stress

for the bearings esamined is given in Table 3 and
Table 4.

Table 4. Stresses under Compression plus Shear

5.1 Mpa Compression plus 85% Shear Strain

From Table 3, the presence of a hole does not

Ovm (MPa) greatly affect the vulnerability of the plate to yield
Solid 147.0 if the bearing is compressed, but filling the hole
with rubber does increase the vulnerability. This
6 mm Hole 152.5 effect is not observed under combined
12 mm Hole 207.7 compression and shear (Table 4), from which it
appears that there is little effect of a hole on
12 mm Filled Hole 148.1 yielding of the shim, provided the hole is filled

with rubber.

CONCLUSIONS

Overall, the work reported in this paper has shown broad agreement between simple design equations and
FEA. No design equations are currently available for determining the Von-Mises stress in the shims for
bearings with central holes and for bearings under combined compression and shear. The FEA has provided
this information which is presentable in color contour plots, giving graphic insight for a designer (Billings,
1992).

The agreement between the FEA and the closed form calculations of stiffness for bearings with a central hole
was not good. Further investigation is called for to elucidate the cause of this discrepancy. A design curve
derived from the FEA is provided in Fig. 2 as an improvement to the compressive stiffness reduction factor,
F, found in the vertical stiffness equation, (8).

The understanding of the mechanics of elastomeric bearings has been advanced as a result of the work reported.
The existing closed form design formulae appear adequate up to medium strain levels and are suitable for
preliminary design applications.
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