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ABSTRACT

The effects of solid-fluid interaction on wave propagation in a deep oceanic structure was investigated in
this paper. Numerical calculations were performed by a normal mode superposition method. According
to the numerical results, effects of solid-fluid interaction had an influence on propagation of Rayleigh
waves.
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INTRODUCTION

It is important to examine the effects of fluid layer on wave propagation in an oceanic structure.
Previously, some reserch has already been carried out regarding the wave propagation in an oceanic
structure. For example, Biot (1952) examined the sub oceanic Rayleigh wave mode using the analytical
approach, and Tan (1989) formulated finite element method for a layered solid-fluid medium. In this
paper, wave propagation in a deep oceanic structure is investigated to examine the effects of solid-
fluid interaction. A normal mode superposition method (Touhei, 1994 and 1995) is introduced here to
examine the solid-fluid interaction effects in the Rayleigh wave modes.

THEORY AND METHOD

Governing Equations for the System

The wave motion in an isotropic elastic space is expressed as
M+ p)VV - u+ uViu — p,Blu=—f (1)

where w is displacement, A and g Lamé’s constants, ps the mass density of solid, V the gradient
operator, @ the partial differential operator whose subscript denotes the derivative argument and f



the force density in solid. Assume that fluid is compressible and doesn’t have viscosity. The governing

equation for fluid is given by .
Vip—S0p=—9 (2)

where p denotes fluid pressure, ¢ the sound velocity of fluid and g the force density of fluid.
The continuity of the displacement at solid-fluid interface is represented using Euler’s equation,
n-Vp=—prthin-u 3)

where p; is the mass density of fluid and n the outward normal unit vector from the solid surface. The
equilibrium of the traction is as follows
o=-np (4)

where o denotes the traction vector of solid.

QGreen’s Function in the Time Domain

Following Olson et al. (1984), solid displacement % and fluid pressure p can be represented as follows
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where m is azimuthal order number, 7, ¢, z the cylindrical coordinate notation, &, the discrete wavenum-
ber and R} (r,9), Sk. (1, @), Tk, (r,#) the surface vector harmonics whose components are given by
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where e, e,, e, are the base vectors in cylindrical coordinate system. Note that discrete wavenumber

k, satisfies the following zero equation,
In(knR) =0 (11)

where R is positive real number which is chosen Jarge enough so that effects of image source can be
removed in the time window.

Complete solution for Egs. (1) to (4) can be expressed using a normal mode superposotion method,
which is as follows,
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where CJ* is the matrix whose components are the surface vector harmonics, M the mass matrix
of the system, V;* the modal matrix of the system, Fi» and G} the force density in solid and fluid
corresponding to the discrete wavenumber domain and F* (t) the orthogonal matrix whose components
are
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Fig. 1 A deep oceanic structure around Solomon Islands (Ewing et al., 1957)

Table 1. The thickness of the finite element of Solomon Islands oceanic structure
[ Depth [km] [ Thickness of the element [km] |

[ 00~3557 | 0.2228 ]
-15.0 ~ 0.0 1.0
-75.0 ~-15.0 3.0
-100.0 ~ -75.0 5.0
-200.0 ~ -100.0 10.0
-1000.0 ~ -200.0 32.0
P () = diag. [} 1)()s - - P ()] (13)

" sin | /Aﬁ(i)t
Pren(py(t) = —F=—=—0(t) (14)
/ Men(d)

where A ;) is eigenvalue and 6(t) a unit step function.

NUMERICAL CALCULATIONS

A deep oceanic structure shown in Fig. 1 is analyzed to investigate the effects of solid-fluid interaction.
The oceanic structure shown in Fig. 1 is around Solmon Islands (Ewing et al., 1957). In the analyzed
model, focal depth is 75 km, thickness of fluid 5.57 km, mass density of fluid 1.0 g/cm® and sound
velocity 1.52 km/sec. In addition, mass density of solid is 3.0 g/cm?®, S-wave velocity 4.56 km/sec and
Poisson’s ratio 0.25. A rigid basement is imposed deep enough from the solid-fluid interface, which is
set at the depth of 1000 km to remove the effects of the reflected waves from rigid boundary in the
time window. Thickness of each element is shown in Table. 1. In the Table, the origin of the depth is
set at the solid-fluid interface.

Dispersion curves of the normal modes for the oceanic structure are shown in Fig. 2. In the figure, the
ordinate denotes the normalized phase velocity in which the unit phase velocity denotes the S-wave
velocity of solid. It is found that most of the dispersion curves approach the P- and S-wave velocity
and undispersive property of the body waves is constructed by the sum of the dispersive normal modes.
Some of the normal modes are located under the S-wave velocity and flatten out near the sound wave
velocity. The dispersion curves are compared with those from period equations of Biot (1952). The
present dispersion curves are in almost complete agreement with solutions from the period eauation.
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Fig. 2 Dispersion Curves of the Normal Modes

Figure 3 shows the modal shapes for fundamental and first higher Rayleigh wave mode. Modal shapes
for the fluid pressure and solid displacement are normalized to have the fluid pressure have a unity
amplitude. The amplitude of solid displacement is found to be quite small when compared with that
of the fluid pressure, which shows the effects of solid-fluid interaction is very small.

Time histories of solid displacement and fluid pressure at the solid-fluid interface are shown in Fig. 4.
In the figure, the observation point is set at the epicentral distance of 375 km. The time axis in Fig.
4 is normalized so that the arrival of S-wave is unity, while sclid displacement and fluid pressure is
normalized using the following equations,

w2l
W = --—3F—w (15)
miul
U= —'-F’U/ (16)
n2L?
P = 1
a5 P (17)

where W, U denote normalized vertical and horizontal solid displacement, P the normalized fluid pres-
sure. In addition, w, u, p actual displacement and pressure, F' actual magnitude of point source, L the
distance between source and observed point and j the shear modulus. In Fig. 4, sloid line indicates
the present solution and broken line the exact solution of Pekeris et al. (1957), which is the solution of
Lamb’s problem in an elastic half space. It is found that solid-fluid interaction influences the arrival of
Rayleigh waves, but does not affect the arrival of body waves. The real time lag of the Rayleigh wave
between these solutions is about 4.5 sec.
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Fig. 3 Modal Shapes for Solid-Fluid Interaction System
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CONCLUSION

The effects of solid-fluid interaction in a deep oceanic structure were investigated in this paper. Ac-
cording to the modal shapes of the solid-fluid system, the effects of solid-fluid interaction were small.
It was found from the time histories of solid displacement that the apearance of the Rayleigh wave was
slightly delayed due to the solid-fluid interaction.
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