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ABSTRACT

This paper proposes a simplified analytical method for computing the dynamic soil stiffness for a cylindrical
structure embedded in a finite soil stratum supported by a rock half-space. For a whole side surface of the
embedded structure, an averaged horizontal soil stiffness that can consider a resonance effect of the finite
stratum and a confining effect of impedance ratio of the rock half-space to the finite soil stratum is derived.
The validity of the proposed method is examined by comparing it to results of the 3-dimensional thin layer
approach. Results of the proposed method show a good agreement with those of the 3-dimensional analysis.
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INTRODUCTION

Analyzing dynamic response of embedded structures, especially to estimate side soil stiffnesses for the
structures, dynamic soil springs based on an assumption of Winkler type foundation have been well known
and utilized for their convenience and relevance (Novak et al., 1978) . Because of the limitation of such
assumption, it is difficult for those springs to represent 3-dimensional soil behaviors and a resonance effect of
a finite soil stratum supported by a rock half-space. The purpose of this paper is to present an improved
analytical method that can take the above effects into account for obtaining an averaged horizontal soil stiffness
and demonstrate numerical examples of the averaged horizontal soil stiffnesses for a whole side surface of the
embedded structure with impedance ratios of the rock half-space to the finite soil stratum and aspect ratios of
the structure. The relevance and accuracy of the proposed method are verified by displacements of rigid
structure and moment of the structure due to horizontal subgrade reactions of the surrounding soil. The
3-dimensional thin layer approach referred for derivation of the proposed method has been adopted as an exact
solution in this paper (Tajimi ez al., 1977).

HORIZONTAL SOIL STIFFNESS SURROUNDING STRUCTURE

Model for Simplified Analysis

First, horizontal motion of the structure embedded in a horizontally homogeneous, elastic surface soil layer (a
finite soil stratum) overlying generally a relative hard (a rock half-space) is defined. In this case, an impedance
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Fig. 1. Analysis model and coordinate system.

for the finite soil stratum is assumed as pVg (p:mass density; Vg:velocity of S-wave) and that for the rock
half-space is presumed as spVg (s=p'Vy' /p Vg:impedance ratio; superscript(') represents the physical
constants of the rock half-space). Fig.1 illustrates the massless rigid cylindrical foundation embedded in the
finite soil stratum mentioned the above, whose radius and depth are 1, and D, respectively. The total system of
the soil shown in Fig. 1 is assumed as a model composed of a single thin layer and a dashpot-mat. The vertical
deformation of the soil is omitted and the horizontal deformation is assumed to vary linearly along z-direction.
The horizontal displacement vector is thus defined in the form

{u} =(u , u,)7T exp(ioy) (1)

where, i; imaginary number and w; circular frequency.

Derivation of Soil Stiffness

The general solution of the 3-dimensional wave equation for the thin layer soil model in the cylindrical
coordinates gives the following horizontal displacement vectors that are specified at each nodal interface:

{u}={v, }cosb, {ue} = {Ve} sin 0,
(2)

where,

{vr} =L HP(ar) - Hf(an) ] (X} + 5 HP(Bn+HOED 1 {Y}, )
{ve) =L HP(en+HP(an) 1 (X} + 5 [HOE) - HEPD) 1 {Y}.

H,,®X(*) =Hankel function of the 2nd kind of the n-th order.
In the above, the time function exp(iwt) is omitted. The wave numbers o and f, and the horizontal
displacement vectors at each nodal interface {X} and {Y} must satisfy the eigenvalue equations:

(B2[Ag]l+[Ggl-0?[MD{Y}={0},

4
(a?[Ap)+ [Ggl-02[M]){X}={0}.
where, [Ag], -.., [M] are assemblies of the corresponding element matrix of
[As]=GHIE1] [Gsl=-S[Ex]+iap' Vi [Esl [Ap]=(h+20)H[E:],
(5)

M]=pH[E; ] [E =l[2 1], E =[1 '1], E :[0 0].
[]P[l][1]612[2] _11[3]01

Where, G:shear modulus of elasticity, A:Lame's constant, p:mass density of soil, H:thickness of layer, and
superscript (') denotes the dashpot-mat properties. Here, consider a single layer of the thickness H and having
a hole of radius rj, at its center, where the top and bottom surfaces are designated by 1 and 2. The solutions of

Eq.(4) are



61=—P11—[(%&)2-6(1+f1(cm“2, a1=CB1 {X1¥={Y:}={S1}

(6)
po=-L [@HY-6(1+1 (@' 2=l (Xz}={Y2}={S2}
S
where, C=swr/Vg, L=Vs/Vp, Vg:shear wave velocity, Vp:compressive wave velocity and
{Sl}=(1,1/fz(C))T,{Sz}=(l,1/f1(C))T, 7
f,(z)=iz/3 -1z, f2(z)=iz/3+1(2), f(z) =A(1+iz/3)%-12/3 .
Now, the displacement vectors at the radius r o are defined in the form
{U,}:{Vr}cosﬂ,{Ue}z{Ve}sinB. (8)
Vectors {V r} and {V 4} can be given from Eq.(3) as follows
2 2
{Viy=13 (HP(oro) - HP(oum) 1 {Xi} 0 1> (HEiro) + HP@Bm) 1{Yi}ap;
j=1 j=1
2 2
{Vel}= %z [HP(axjro) + HP (a0 1 {Xi}qa; + %—z [HP(Bjro) - HP(Biro) 1 {Yi}qp; - %
=1 j=1

Now, assuming that a circular rigid plate with radius 1, is embedded in the hole and subjected to a harmonic
sway motion with amplitude {V_} in the x-direction. Then one has

(V 3={V3y={Vy} (10)

In general, the relationships between stress and strain in the polar coordinate are indicated in the forms,

where o, =-p;CcosB, Og=-pgsinb, (11)
ov . dve Vg+V;

_ 1 9 Vo _
Pr—"[)\-{r_g‘(rvr)‘*'_f.—}'*‘zG"éT]r=ro’ pe_'G(E“ T

Then x-directional resultant force, FX, at a unit depth is given as follow

)r=ro - (12)

/2
ﬁxz--Zj (G080 -0,sin0)rodd=mro(pr-po)- (13)
-x/2
The total forces P Xj (j=1,2) working at the surfaces (1,2) in the x-direction are
H/2
ij=7”0f N;(pr-Peo)dz, (14)
-H/2

where N ; are the interpolation functions and are given by N; = 1/2-2/H, N ,=1/2+2/H, respectively.
Thus, the force vector {P_}=[Py, P,] T becomes

(P} = %GH [ Fla1.B1.10) ([E 1]+ 8O[E 4] + HOE 1] - "5 [E3])

+ F(az,B2r0) ( [E1] - g(C)[E 4] - h(O)E ] - 1_1_(29_ [E3]) 1{Vx}, (15
where,

HPanHP@n+HP@EDH Dan! T ’

Fla, B, 1) =pr
HP@nHP@n+HP@nH (B r)

o(2)=1/1(2), h@)=iz/3(), [Ed:%[; ?] (16)
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Fig. 2. Soil spring model for an embedded structure.

DISCRETE SOIL SPRING MODEL

In general, structures and soils are modeled by masses and springs, and dynamic soil stiffnesses in
SR-model. The dynamic soil stiffnesses for SR-model are typically assumed to be composed of contributions
of side and bottom soil stiffnesses of an embedded structure as shown in Fig.2. Especially, the side soil
stiffness consists of two components, that is, laterally axial stiffness, k, and rotational stiffness, k. Both
dynamic stiffnesses have been well known as Novak's springs. The model using Novak's springs 1s quite
convenient and applicable for the embedded structures, on the other hand, it has difficulty in representing
3_dimensional soil behaviors. Focusing on this point, an improved soil model added shear stiffness, ky, that
can counterbalance with the above soil characteristics has been proposed. For cases of impedance ratio s=0
and s=c0, a procedure to obtain the shear stiffness with laterally axial stiffness independent of impedance ratio
has been also presented (Ikeda et al., 1992, Shimomura et al., 1995). In this section, an approach to estimate
laterally axial and shear stiffnesses dependent on impedance ratio is proposed using the derivation in the
previous section.

Assuming that the laterally axial stiffness k;, varies along z-direction, Eq.(15) can be rewritten as follow,
{Pysr=[KJ{Vg} (a7

where, stiffness matrix [K ] is given as

) = [K Kiz] - _11[3fal+~ka2 Farrker ]+k,[ 1] (18)
K21 K2 12 kal"'kaZ ka1+3ka2 -1l

Now, the laterally axial stiffness for a unit depth Ky1» Ko designated at the top and bottom surface and
stiffness k' can be represented as followings,

~

Ka1 = aG[{1+g(C)+2h(C)} F(a1,B1,10) + {1-8(0)-2h(C) } F(az2,B2,10)], (19)
Kaz = nG[{1+g(C)-h(CO)} F(a1,B1,10) + {1-8(O)+h(C) } F(az,B2,10)], (20)
k'= sGH[2g(C)+h(O[ F(a2,B2.10) - Fla1,B1.10)] / 12 (21)
Case s— 0 In case when s converges at O, functions of g(C) and h(C) would converge 1 and O,

respectively. So, Eq.(15) yields to the following relationship between the nodal force vector and displacement
one,

F(Z1,B1,10) [1 11, E@2,82.10)

= nGH
Py =non (EELILID [T !

[ ipeva, (22)

where

b= Pa=riqpy/2-@DT. &=t @




Eq.(23) coincides with our previous result for a unit thin layer without support (Ikeda et al., 1992). In this
case, the laterally axial stiffness k,y for the top nodal surface is identical with k5 for the bottom one, so the
constant laterally axial stiffness for a unit depth k is given as

K,=2xaG F(a—l,-ﬁ_l,ro)- (24)

Eq.(24) coincides with the Novak's result and the shear stiffness ki, is written as (Novak e? al., 1978),
kp=k'-Ka/ 12=aGH[F(a2,B2,r0)-F(a1,B1.r0)1/6. 25)

Case s— oo In case when s converges at oo, functions of g(C) and h(C) would become O and 1,
respectively. So Eq.(15) yields to the following,

{Px}=J‘LGH(F(al’6I31’rO) [421 g , Fa2.f2.r0) [O O]) V. (26)

2 01

The relationship between the nodal force and displacement at the top surface is written as,

PXI:K11Vx1=2n3GH F(al,ﬁl,ro)vxl, (27)

61=-ii1{—4/3-(“\’,—13)2, a1=CP1 - (28)

Egs.(27) and (28) also coincide with our previous results (Shimomura et al., 1995).

where,

NUMERICAL EXAMPLES AND DISCUSSIONS FOR SOIL STIFFNESSES

Derivation of Averaged Horizontal Soil Stiffness

Derivation of horizontal displacement of the soil along the side surface of the structure is assumed as
V(@z) =NV +N,V,=(1/2-z/H)V;+(1/2+2/H)V;,. 29

Now, the averaged soil stiffness is defined as k. Substituting V, =0 into Eq.(29), soil reaction at an arbitrary
depth, o(z), is given as

o(z)=kN,Vi=k(@/2-z/H)V;. (30)

Then, the nodal force at the top surface can be derived by the same manner as Eq.(14)

H/2 H/2 _
P1=f Nlo(z)dz='k"[ N12v1dz=§v1. (31)
-HI/2 -H/2

Finally, the averaged soil stiffness can be obtained by Egs.(15) and (31)

kK=nG[{1+g(C)/2+h(C)} F(a 1, 1,r0) + {1-8(C)/ 2-h(C)} F(az,p2.10)] . (32)

Numerical Results of Averaged Horizontal Soil Stiffness

To confirm the applicability of the proposed method, first, the averaged horizontal stiffnesses due to the
horizontal subgrade reactions of the surrounding soil of the embedded rigid structure are estimated. Aspect



ratios of the structure and impedance ratios of a rock half-space to a finite soil stratum are employed as
parameters.

Fig.3 shows the averaged horizontal stiffnesses for a unit depth with the impedance ratios, s=1, 2, 5 and
1000 and aspect ratio r,/H=1 where r, is the radius of the rigid structure, H is a height of a finite soil stratum.
Below the natural frequency of the finite soil stratum (wg), the real parts of the stiffnesses increase with
increasing of the impedance of the rock half-space (confining effects of the rock half-space). Because the rock
half-space is modeled in terms of a dashpot-mat, the real parts of the stiffnesses drop rapidly below the peak
frequency. Practically, static stiffnesses can be assumed to be the maximum values of the real parts of the
stiffnesses. Furthermore, in the range below the peak frequency, the values of the real parts of the stiffnesses
are larger than for the Novak's spring. The imaginary parts of the stiffnesses in the low frequencies increase
with decreasing of the impedance of the rock half-space. It means that wave transmits below the dashpot-mat.
In cases of low impedance ratios, the proposed method can represent the dissipation of energy transmitted
below the dashpot-mat. Above about twice the natural frequency, there is no difference between the proposed
stiffnesses and Novak's one, because the surrounding soil would behave as the lateral wave propagation
resistance.

Figs. 4 and 5 show the averaged horizontal stiffnesses for a unit depth with aspect ratios, r,/H=1/4, 1/2, 1
and 2, and impedance ratio s=5. The real and imaginary parts of the stiffnesses in Fig.4 are represented by
non-dimensional stiffiness k/G. On the other hand, Fig.5 has a longitudinal axis of k/G(rO/H)?’/4 and k/G(r,/H)
for the real and imaginary parts of the stiffnesses, respectively. Beyond twice the natural frequency of the
finite soil stratum, there is no difference with respect to aspect ratios for the real parts of the stiffnesses. The
real parts of the stiffnesses in the low frequency range would be proportional to (r,/H)3/4 and the imaginary
parts would also be proportional to (r ,/H) in all frequency range.

SEISMIC RESPONSE OF AN EMBEDDED STRUCTURE

Seismic responses of a cylindrical rigid structure embedded in a finite soil stratum sustained by a rigid base
are performed in our previous paper (Shimomura ez al., 1995). In this paper, the same seismic responses are
examined with the soil stiffnesses discussed in the previous section to compare with the responses of the
3-dimensional thin layer approach (TLEM). Fig.6 shows an ideal model of a cylindrical rigid structure in a
finite soil stratum supported by a rock half-space.

Numerical Results and Discussions

In the following analyses, it is assumed that the embedded depth of the structure is H(=12m), which is
divided into n(=12) sub-layers, impedance ratio of the rock half-space to the finite soil stratum is s(=3), and
the radius of the structure is r(=H/2). The hysteretic damping of soil is neglected.

Fig.7 shows modulus of amplification from the free field at the free surface to the top of structure and that of
non-dimensional coefficients of subgrade reactions. In both cases, itis assumed that Poisson's ratio of soil is
v(=0.4), aspect ratio is r,/H(=1/2), and the mass ratio of structure to soil is my/mg(=1/2). Those figures
include the response by the proposed method, Novak's model and the 3-dimensional thin layer approach.
Since the proposed method provides frequencies about 10% higher than for the 3-dimensional results, the
natural frequency of the finite soil stratum that generates a valley is also higher than for the 3-dimensional
analysis. It is indicated that non-dimensional coefficient of subgrade reactions predicted with the proposed
method are in good agreement with for TLEM, especially in the low frequency range.

CONCLUSIONS

A simplified analytical method that can provide the dynamic soil stiffness for the structure embedded in a finite
soil stratum supported by a rock half-space was proposed. The averaged stiffness derived from the above
stiffness can take not only the resonance effect of the finite soil layer but also the confining effect of
impedance ratio of the rock half-space to the finite soil stratum into account. It is also indicated that the
averaged stiffness depends on aspect ratios of the structure, r/H.
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Fig. 3. Averaged horizontal stiffness functions of embedded rigid structures
due to horizontal subgrade reactions of surrounding surface soil.
(Poisson's ratio v = 1/3, I, {H=1).
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Fig. 4. Averaged horizontal stiffness functions of embedded rigid structures
due to horizontal subgrade reactions of surrounding surface soil.
(Poisson's ratio v = 0.4, impedance ratio s = 5).
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Fig. 5. Averaged horizontal stiffness functions of embedded rigid structures
due to horizontal subgrade reactions of surrounding surface soil.
(Poisson's ratio v = 0.4, impedance ratio s = 5).
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of rigid structures, IMS/w2mgu,l. (Poisson's ratio v=0.4, s=3).

The validity of the proposed method was examined by comparing it to the results of the 3-dimensional thin
approach. Results of the proposed method show good agreement with the 3-dimensional results, especially in
the low frequency range. The proposed method in this paper can represent appropriate soil stiffnesses for
embedded structures in a finite soil stratum on a rigid base or a rock half-space.

Acknowledgement
The authors wish to express their appreciation to Dr. H. Tajimi, Professor Emeritus of Nihon University, for
his insightful suggestions and discussions.

REFERENCES

Ikeda, Y., Tajimi, H. and Shimomura, Y. (1992). A simplified method of obtaining interaction stiffnesses
associated with the embedment of structures. Proc. I0WCEE, 1525-1530.

Novak, M., Nogami, T. and Aboul-Ella, F. (1978). Dynamic soil reactions for plane strain case. Proc.
ASCE, 104, No.EM4, 953-959.

Shimomura, Y. and Ikeda, Y. (1995). A simplified seismic response analysis of an embedded structure.
Trans. 13SMIRT, 1, 79-84.

Tajimi, H., Minowa, C., and Shimomura, Y. (1977). Dynamic response of a large-scale shaking table
foundation and its surrounding ground. Proc. 7WECC, Vol.4. 61-66.



