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ABSTRACT

Layered solid-fluid media in a gravity field were analyzed to investigate effects of solid-fluid interac-
tions as well as gravity on wave propagation. A numerical method introduced here was a normal mode
superposition method, in which a transient response of layered solid-fluid media in a gravity field was
represented in terms of the normal modes. Numerical results showed that propagation of the gravity
perturbated wave could be seen after the propagation of body waves and the Rayleigh wave. The
gravity perturbated wave was characterized as the wave having a very low phase velocity and very
low frequency.
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INTRODUCTION

The effects of fluid layer need to be taken into consideration in the analysis of oceanic structure and/or
liquefied area due to strong ground motion. In the analysis, the gravity term in the governing equation
is sometimes nesessary to investigate {sunamis in an oceanic structure or gravity perturbated waves
in a liquefied layer.

Some research for examining effects of gravity on wave propagation has been already carried out.
Gilbert (1967) proposed that there is a gradual transition between Rayleigh waves and gravity per-
turbated waves for a very soft incompressible sediment. Chavez-Garcia and Bard (1993a,b) discussed
the possibility of gravity perturbated waves in Mexico City during the September 1985 earthquakes
using Aki and Larner method.

In this paper, numerical calculations are performed to investigate effects of solid-fluid interactions
and gravity on wave propagation in a thin fluid layer. A normal mode superposition method (Touhei,
1995) is applied to the numerical analysis to examine the properties of normal modes for the gravity
perturbated wave as well as the Rayleigh wave.



FORMULATION

Basic Equations

Following Lamb (1945), the governing equation for compressible fluid in a gravity field is expressed
by,

P50l = KV 0 — pygOap (1)
where p; denotes the mass density of fluid, 0 the paritial diffrerential operator whose subscript refers to
the parameter for the differentiation, ¢ time, ¢ the velocity potential, x the bulk modulus of the fluid,
g the gravity acceleration, z the vertical coordinate with positive direction upwards. The governing
equation of solid is as follows,

A+ p)VV -u + pViu—pffu=—f (2)

where A and p denotes the Lamé constants, w the displacement field, p, the mass density of the solid,
f the force density acting on the solid.

It is possible to couple the governing equations for fluid and solid using the solid-fluid interaction
equations, which are the equilibrium of traction vectors and continuity of vertical displacements for
both regions at the solid-fluid interface boundary. In case that the solid-fluid interface boundary lies
horizontally, those solid-fluid interaction equations are as follows,

o+png(n-u) = —np (3)
n-Vo=n-u 4)

where o is the traction vector of the solid due to the elastic deformation, n the normal vector outward
from the solid boundary, whose direction agrees with the vertical coordinate in the present analysis
and p the pressure of fluid. Note that the 2nd term of the left hand side of Eq. (3) refers to the
increment of the traction vector due to a gravity effect. The relationship between the fluid pressure
and displacement potential for fluid is as follows,

p = —psip — psg0up ()
Normal Mode Superposition Method

To formulate a normal mode superposition method, let us introduce the discrete wavenumber repre-
sentations for u, f and ¢ as follwos,
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where J,, is the first kind of the Bessel function of order m, k, the discrete wavenumber for the radial
direction, (r,¢) the cylindrical horizontal coordinate, m the azimuthal order number and R, S and
T are the surface vector harmonics (Olson et al.. 1984).

The finite element formulation (Lysmer and Drake, 1972) is used to obtain solutions Ug, , Uy , Ugy.
and ®7*. The finite element equation for obtaining the solutions are as follows,

e 1el){ 2} 5

2



where [M] is the mass matrix, [K7*] is the stiffness matrix depending on k, and m. These matrices
are not symmetry due to the solid-fluid interaction equations (Touhei, 1995). Note that Uy represent
the nodal displacement, ®7* the nodal displacment potential for fluid, £y the nodal force acting on
the solid region, and G the nodal force acting on the fluid region, which corresponds to the gradient
of displacement potential for fluid, respectively.

Based on the modal analysis procedure(Touhei, 1994 and 1995), the solution of Eq. (9) is represented
by,
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where [Vk':] denotes the the modal matrix for [M]™ [K ,{,Z] and [A;’; (t— 7-)] is the diagonal matrix
whose components are

[Ag(t)] = diag. [(Fy. (), ), (11)
i (8) = s———mwmk" o(t) (12)
(J)lc

Note that the subscript inside the parenthesis in Egs. (11) and (12) denotes the order of the eigenvalue
for matrix [M]~ [K i ] wi the square root of the eigenvalue and 6(t) the unit step function.

Using Eqgs. (6), (8) and (10), the complete solution for the layered solid-fluid media in a gravity field
is represented by,
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where |Ci (r, ¢)} denotes a matrix whose components are the surface vector harmonics and
Jm(knr) exp(im@), which transform the solution in the wavenumber domain into the space domain.

NUMERICAL EXAMPLES

Analyzed Model

Numerical calculations are performed to the analyzed model shown in Fig. 1, in which a thin fluid
layer overlies an elastic homogeneous half space. The analyzed model is set to investigate gravity
perturbated waves in a thin fluid layer such as a liquefied layer. For this model, the depth of the fluid
layer is 30 m, mass density of the fluid p; 1.2 g/cm?, sound velocity of the fluid oy 1.5 km/s, S wave
velocity of the solid 3, is 0.5 km/s, P wave velocity of the solid o, 1.5 km/s, and mass density of the
solid p, 2.0 g/cm®. A rigid boundary is imposed at a depth of 60 km from the surface of the elastic
solid to obtain the normal modes as well as to define time window for which the responses are not
affected by a rigid boundary. The thickness of the finite elements in the fluid region is set to 1.0 m,
while that in the solid region is shown in Table 1.

Dispersion Curves

Dispersion curves for the layered solid-fluid structure with the imposed rigid boundary are presented
in Fig. 2. Dispersion curves give the relationship between the phase velocity of the normal modes
and frequency. In Fig. 2, the ordinate denotes the dimensionless phase velocity as the ratio of actual
phase velocity 8 to S wave velocity of the solid ;.

Most of the dispersion curves tend to flatten out near the P and S wave velocities, which show that
undispersed body waves can be synthesized from the dispersed body waves. Among them, there are



Table 1 Thickness of the finite elements
in the solid

py = 1.2g/cm®  fluid layer thickness of
ay=1.5km/s (depth=30 m) depth (km) the elements (km)
0.0-0.1 0.01
YA YA Y YA 0103 0.02
ps = 2.0g/cm?®  elastic layer 0.2-04 0.05
as; =1.5 km/s  (half space) 0.4-1.0 0.1
Bs = 0.5 km/s 1.0-2.0 0.2
Fig. 1. Layered solid-fluid model. 52 .0[2—150'?0 01205
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Fig. 2 Dipsersion property of normal modes

two dispersion curves which do not synthesize the body waves. The phase velocity for one of the
two dispersion curves is almost equal to the S wave velocity, but always less than that velocity. This
dispersion curve is for the Rayleigh wave mode. 'The other mode is located in the region where both
the frequency and phase velocity are very low. This mode is for the gravity perturbated wave.

The dimensionless phase velocity of the gravity perturbated wave near 0 Hz is about 0.034 which
agrees with the result from the following equation,

¢y = \/9H /B (14)

where H denotes the depth of the fluid layer. Equation (14) gives the phase velocity of gravity per-
turbated wave of incompressible fluid on a rigid bottom at the infinite wavelength. We can predict
from the agreement that compressibility as well as the effect of solid-fluid interaction are small for the

present gravity perturbated wave mode.
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Fig. 4 The fundamental Rayleigh wave mode (1.0 Hz).

Dispersion properties obtained from the period equation (Ewing, 1957) are added to Fig. 2. Figure
2 shows that the present solution for the Rayleigh and gravity perturbated waves are in almost com-
plete agreement with solutions from the period equation. These results give the validity of present
eigenvalue analyses.

Modal Shapes

Modal shapes for the Rayleigh and gravity perturbated wave modes are shown in I'igs. 3 and 4. In
these figures, modal shapes for a fluid are expressed in termms of fluid pressure. Modal shapes are nor-
malized so that fluid pressure has a unity amplitude. To examine the accuracy of the present modal
shapes, the modal shapes obtained from the period equation are added to Figs. 3 and 4. Figures 3
and 4 shows that the present mmodal shapes are almost in complete agreement with the solution from
the period equation.

According to the modal shapes for the gravity perturbated wave, the eflects of solid-fluid interactions
are found to be very small. In other words, the displacement amplitude of the gravity perturbated
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Fig. 5 The displacement snapshots (5 sec. ).
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Fig. 6 The displacement snapshots (10 sec. ).

wave mode due to fluid pressure of a unity amplitude is very small. On the other hand, the effects of
solid-fluid interactions are not so small in the Rayleigh wave mode. Therefore, the solid-fluid interac-
tion effects are mainly conveyed by the Rayleigh wave mode in the thin fluid layer model.

Displacement Snapshots

Now, let us investigate the transient properties of the gravity perturbated wave by superposing the
normal modes. During this calculation, a vertical point source with a step-function time history at
a depth of 1 km from the solid-fluid interface is applied. The intensity of the point load is set at
1.0 x 105 kN

Displacement snapshots for the fluid surface and solid-fluid interface are shown in Figs. 5 to 8 to
investigate the propagation of the gravity perturbated wave.
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Fig. 7 The displacement snapshots (30 sec. ).
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Fig. 8 The displacement snapshots (60 sec. ).

Figures 5 and 6 show the displacement snapshots at 5 and 10 s, respectively. It is found from these
figures that deformation of the fluid surface is subjected to that of the solid-fluid interface.

Figures 7 and 8 show the displacement snapshots at 30 and 60 s, respectively. It is found from I'igs.
5 to 8 that the deformation of the solid-fluid interface does not vary even if time passes. On the
other hand, the deformation of the fluid surface varies and loses its initial shape. The change in the
deformation for fluid surface is due to gravity.

Displacement at the center of the fluid surface is found to decrease at 30 s, and drops down at 60 s.
The fall in the displacement at the center of the fluid causes a gravity perturbated wave propagating
slowly toward the far field from the source. The gravity perturbated wave propagates after the prop-
agation of body waves and the Rayleigh wave. In this sence, the gravity perturbated wave mode is
characterized as that having a very low frequency and phase velocity, as can be seen in the dispersion

curve,



CONCLUSIONS

Effects of solid-fluid interactions and gravity on wave propagation in a thin fluid layer were examind
using the normal mode superposition method. A transient response of layered solid-fluid media was
represented in terms of normal modes. According to the numerical calculations, effects of the solid-
fluid interactions on the gravity perturbated wave were very small. On the other hand, the effects
of soid-fluid interactions were not small in the Rayleigh wave mode. The porpagation of the gravity
perturbated wave showed that the gravity perturbated wave had a very low frequency and phase
velocity, which agreed with the propertis of the dispersion curve.
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